
Verification of Multi-Agent
Properties in Electronic
Voting: A Case Study

Damian Kurpiewski, Wojciech Jamroga, Łukasz Maśko, Łukasz Mikulski, Wojciech
Penczek, Teofil Sidoruk

The problem

• Verification of strategic abilities under
imperfect information

• Logic: 𝐀𝐓𝐋𝐢𝐫

• Complexity: Δ2
𝑃 − complete

Simple Voting Model
Example

Agents

• Casts her vote

• Decides to show (or not) her vote to the Coercer

Voter

• Gets (or not) the vote from the Voter

• Decides to punish (or not) the Voter

Coercer

1 Voter
1 Coercer

2 Candidates

≪ coercer ≫ 𝐺(𝑓𝑖𝑛𝑖𝑠ℎ1 → (¬𝑝𝑢𝑛1 ∨ 𝑣𝑜𝑡𝑒1,1))

≪ coercer ≫ 𝐺(𝑓𝑖𝑛𝑖𝑠ℎ1 → (¬𝑝𝑢𝑛1 ∨ 𝑣𝑜𝑡𝑒1,1))

TRUE

2 Voters, 1 Coercer, 2 Candidates

The
solution(?)

Fixpoint approximations

DFS and DominoDFS strategy synthesis

Parallel DFS strategy synthesis

Partial-order reductions

Fixpoint
approximations

• Fixpoint computation is (usually) efficient

• Fixpoint equivalences do not hold for ATLir

• Lower bound: translation to AE𝜇C

• Upper bound: ATLIr (perfect information)

• Sometimes bounds don’t match

DFS strategy
synthesis

• Recursive search from the initial state

• Synthesize winning strategy during the search

• Better than exhaustive search through the entire
strategy space

• Handling epistemic classes can be troublesome

DominoDFS
strategy synthesis

• DFS + domination relations

• Observation: some strategies dominate others

• Dominated strategies can be omitted during the
search

Parallel DFS
strategy synthesis

• Main problems to consider:

• It is difficult (if not impossible) to split the model data
between processes

• Epistemic classes can join states in different parts of the
model

• Backtracing is not as simple as it seems

• Several different approaches to parallelization

• Best promising approach:
• Split the work early (preferably from the initial state)

• Each proces has own copy of the whole model

• Split by agent-controlled transitions

Partial-order
reductions

• Asynchronous models

• State-space explosion related to interlacing

• Effective reduction methods exists for LTL and can be
adapted to ATLir

Selene e-voting
Protocol Model
Case Study

Agents

Election
Authority

Generates
trackers and sends

them to voters

Collects votes and
publishes them

Serves as the Web
Bulletin Board

Voter

Casts her vote

Uses tracker to
check the WBB

Coerced
Voter

Interacts with the
Coercer

Casts her vote

Can generate false
tracker and show
it to the Coercer

Coercer

Interacts only with
coerced voters,
telling them the

desired vote

Gathers trackers
from coerced

voters

Can punish
coerced voters

Re-voting scheme

Coerced voter can vote several times

Each vote, apart from the last one, is shared with
the coercer

Last vote (if cast) is private

Coerced Voter (3 candidates, 3 revotes)
Agent VoterC[1]:
init start
shared coerce1_aID: start -> coerced [aID_required=1]
shared coerce2_aID: start -> coerced [aID_required=2]
shared coerce3_aID: start -> coerced [aID_required=3]
select_vote1: coerced -> prepared [aID_vote=1, aID_prep_vote=1]
select_vote2: coerced -> prepared [aID_vote=2, aID_prep_vote=2]
select_vote3: coerced -> prepared [aID_vote=3, aID_prep_vote=3]
shared is_ready: prepared -> ready
shared start_voting: ready -> voting
shared aID_vote: voting -> vote [Coercer1_aID_vote=?aID_vote, Coercer1_aID_revote=?aID_revote]
shared send_vote_aID: vote -> send
revote_vote_1: send -[aID_revote==1]> voting [aID_vote=?aID_required, aID_revote=2]
skip_revote_1: send -[aID_revote==1]> votingf
revote_vote_2: send -[aID_revote==2]> voting [aID_vote=?aID_required, aID_revote=3]
skip_revote_2: send -[aID_revote==2]> votingf
final_vote: send -[aID_revote==3]> votingf [aID_vote=?aID_prep_vote]
skip_final: send -[aID_revote==3]> votingf
shared send_fvote_aID: votingf -> sendf
shared finish_voting: sendf -> finish
shared send_tracker_aID: finish -> tracker
shared finish_sending_trackers: tracker -> trackers_sent
shared give1_aID: trackers_sent -> interact [Coercer1_aID_tracker=1]
shared give2_aID: trackers_sent -> interact [Coercer1_aID_tracker=2]
shared not_give_aID: trackers_sent -> interact [Coercer1_aID_tracker=0]
shared punish_aID: interact -> ckeck [aID_punish=true]
shared not_punish_aID: interact -> check [aID_punish=false]
shared check_tracker1_aID: check -> end
shared check_tracker2_aID: check -> end
PROTOCOL: [[coerce1_aID, coerce2_aID, coerce3_aID], [punish, not_punish]]

Formula

Configurations:

• First candidate (𝑖 = 1) and 𝑘 = #𝑅 revotes

• Last candidate (𝑖 = #𝐶) and 𝑘 = #𝑅 revotes

• First candidate (𝑖 = 1) and 𝑘 = #𝑅 − 1 revotes

• Last candidate (𝑖 = #𝐶) and 𝑘 = #𝑅 − 1 revotes

𝜑𝑣𝑢𝑙𝑛,𝑖,𝑘 = 𝐶𝑜𝑒𝑟𝑐𝑒𝑟 G((𝑒𝑛𝑑 ∧ 𝑟𝑒𝑣𝑜𝑡𝑒𝑣1 = 𝑘 ∧ 𝑣𝑜𝑡𝑒𝑑𝑣1 = 𝑖) → K𝐶𝑜𝑒𝑟𝑐𝑒𝑟𝑣𝑜𝑡𝑒𝑑𝑣𝑖 = 𝑖)

Results

• DominoDFS and alternative distributed algorithm performed much
slower and are omitted from the results

• Parallel verification performs quite well in most cases

• Performance of the parallel algorithm depends heavily on the
structure of the model

• The fixpoint approximation performs well in cases where no strategy
can be found

Conclusions

Modal logics for MAS are characterized by high computational
complexity.

We used the „all out” approach, verifying a genuine protocol for
secure voting.

Partial-order reductions, simple DFS, simple distributed DFS and
fixpoint approximation show very promising performance.

Thank you for
your
attention!

	Slajd 1: Verification of Multi-Agent Properties in Electronic Voting: A Case Study
	Slajd 2: The problem
	Slajd 3: Simple Voting Model
	Slajd 4: Agents
	Slajd 5: 1 Voter 1 Coercer 2 Candidates
	Slajd 6
	Slajd 7
	Slajd 8: 2 Voters, 1 Coercer, 2 Candidates
	Slajd 9: The solution(?)
	Slajd 10: Fixpoint approximations
	Slajd 11: DFS strategy synthesis
	Slajd 12: DominoDFS strategy synthesis
	Slajd 13: Parallel DFS strategy synthesis
	Slajd 14: Partial-order reductions
	Slajd 15: Selene e-voting Protocol Model
	Slajd 16: Agents
	Slajd 17: Re-voting scheme
	Slajd 19: Coerced Voter (3 candidates, 3 revotes)
	Slajd 20: Formula
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25: Results
	Slajd 26: Conclusions
	Slajd 27: Thank you for your attention!

