Verification of Multi-Agent Properties in Electronic Voting: A Case Study

Damian Kurpiewski, Wojciech Jamroga, Łukasz Maśko, Łukasz Mikulski, Wojciech Penczek, Teofil Sidoruk

The problem

- Verification of strategic abilities under imperfect information
- Logic: ATL_{ir}
- Complexity: Δ_2^P complete

Simple Voting Model Example

8

Agents

(wait, -) q_0 (voter, (wait, -)(wait, -) q_1 q_2 vote_{i,1} vote_{i,2} 1 Voter C 1.000 (give, 1 Coercer 0 2 Candidates q_5 q_6 q_3 q_4 $\mathsf{vote}_{\mathsf{i},1}$ vote_{i,2} vote_{i,2} vote_{i,1} $(q_{\mathcal{U}})$,pun) (dr (gr 1.1.1.1 q_{12} q_{13} q_{14} q_8 q_9 q_{10} q_{11} q_7 ์ finish_i finish_i ์ finish_i finish_i finish_i ์ finish_i finish_i finish_i vote_{i,1} vote_{i,1} vote_{i,1} vote_{i,1} vote_{i,2} vote_{i,2} vote_{i,2} vote_{i,2} puni puni pun_i pun_i

2 Voters, 1 Coercer, 2 Candidates

The solution(?)

Fixpoint approximations

DFS and DominoDFS strategy synthesis

Parallel DFS strategy synthesis

Partial-order reductions

- Fixpoint computation is (usually) efficient
- Fixpoint equivalences do not hold for ATL_{ir}

Fixpoint approximations

- **Lower bound**: translation to $AE\mu C$
- **Upper bound**: ATL_{Ir} (perfect information)

Sometimes bounds don't match

DFS strategy synthesis

- Recursive search from the initial state
- Synthesize winning strategy during the search

- Better than exhaustive search through the entire strategy space
- Handling epistemic classes can be troublesome

• DFS + domination relations

DominoDFS • ob strategy synthesis

- Observation: some strategies dominate others
- Dominated strategies can be omitted during the search

Parallel DFS strategy synthesis

- Main problems to consider:
 - It is difficult (if not impossible) to split the model data between processes
 - Epistemic classes can join states in different parts of the model
 - Backtracing is not as simple as it seems
- Several different approaches to parallelization
- Best promising approach:
 - Split the work early (preferably from the initial state)
 - Each proces has own copy of the whole model
 - Split by agent-controlled transitions

• Asynchronous models

Partial-order reductions

- State-space explosion related to interlacing
- Effective reduction methods exists for LTL and can be adapted to \mbox{ATL}_{ir}

Selene e-voting Protocol Model

Case Study

Agents

Re-voting scheme

Coerced voter can vote several times

Each vote, apart from the last one, is shared with the coercer

Last vote (if cast) is private

Coerced Voter (3 candidates, 3 revotes)

Agent VoterC[1]: init start shared coerce1_alD: start -> coerced [alD required=1] shared coerce2 alD: start -> coerced [alD required=2] shared coerce3 alD: start -> coerced [alD required=3] select vote1: coerced -> prepared [aID vote=1, aID prep vote=1] select_vote2: coerced -> prepared [aID_vote=2, aID_prep_vote=2] select_vote3: coerced -> prepared [aID vote=3, aID prep vote=3] shared is_ready: prepared -> ready shared start voting: ready -> voting shared aID vote: voting -> vote [Coercer1 alD vote=?alD vote, Coercer1 alD revote=?alD revote] shared send_vote_aID: vote -> send revote_vote_1: send -[aID revote==1]> voting [aID vote=?aID required, aID revote=2] **skip revote 1**: send -[aID revote==1]> votingf revote_vote_2: send -[aID_revote==2]> voting [aID_vote=?aID_required, aID_revote=3] **skip revote 2**: send -[alD revote==2]> votingf final vote: send -[aID revote==3]> votingf [aID vote=?aID prep vote] skip_final: send -[aID revote==3]> votingf shared send_fvote_aID: votingf -> sendf shared finish voting: sendf -> finish shared send tracker aID: finish -> tracker shared finish sending trackers: tracker -> trackers sent shared give1_alD: trackers sent -> interact [Coercer1 alD tracker=1] shared give2_alD: trackers sent -> interact [Coercer1 alD tracker=2] shared not_give_alD: trackers_sent -> interact [Coercer1_alD_tracker=0] shared punish aID: interact -> ckeck [aID punish=true] shared not punish alD: interact -> check [alD punish=false] shared check_tracker1_aID: check -> end shared check tracker2 aID: check -> end **PROTOCOL**: [[coerce1 alD, coerce2 alD, coerce3 alD], [punish, not punish]]

Formula

 $\varphi_{vuln,i,k} = \langle \langle Coercer \rangle \rangle G((end \wedge revote_{v1} = k \wedge voted_{v1} = i) \rightarrow K_{Coercer}voted_{vi} = i)$

Configurations:

- First candidate (i = 1) and k = #R revotes
- Last candidate (i = #C) and k = #R revotes
- First candidate (i = 1) and k = #R 1 revotes
- Last candidate (i = #C) and k = #R 1 revotes

#A	#R		Fι	ıll Mode	el			Regult				
		#st	#tr	Seq.	Par.	Appr.	#st	#tr	Seq.	Par.	Appr.	rtesuit
4	3	3.63e4	7.46e4	0.003	0.009	1.121	2.60e4	5.99e4	0.001	0.002	0.184	True
4	5	5.62e4	1.15e5	0.004	0.003	0.345	4.01e4	9.26e4	0.002	0.002	0.283	True
4	10	1.06e5	2.18e5	0.009	0.005	0.691	7.55e4	1.74e5	0.004	0.002	0.563	True
5	3	1.55e6	5.91e6	0.158	0.004	14.78	1.09e6	4.65e6	0.112	0.021	12.99	True
6	3	7.61e7	4.98e8	0.524	0.051	41.24	$5.34\mathrm{e}7$	3.82e8	0.427	0.042	37.35	True
7	3]	model gei	neration	timeout	,]	-				

Verification of $\varphi_{vuln,i,k}$ for the first candidate (i = 1) and k = #R revotes

#Ag	#R		Fı	ıll Mode	el			Rogult				
		#st	#tr	Seq.	Par.	Appr.	#st	#tr	Seq.	Par.	Appr.	rtesuit
4	3	3.63e4	7.46e4	0.003	0.010	1.103	2.60e4	5.99e4	0.002	0.003	0.166	True
4	5	5.62e4	1.15e5	0.004	0.005	0.348	4.01e4	9.26e4	0.003	0.003	0.280	True
4	10	1.06e5	2.18e5	0.008	0.009	0.700	7.55e4	1.74e5	0.005	0.004	0.567	True
5	3	1.55e6	5.91e6	0.160	0.055	14.03	1.09e6	4.65e6	0.112	0.053	12.49	True
6	3	7.61e7	4.98e8	0.602	0.083	42.44	5.34e7	3.82e8	0.501	0.057	38.20	True
7	3]	model gei	neration	timeout	- - 1	model generation timeout					

Verification of $\varphi_{vuln,i,k}$ for the last candidate (i = #C) and k = #R revotes

#Ag	#R		Fι	ıll Mode	el			Regult				
		#st	#tr	Seq.	Par.	Appr.	#st	#tr	Seq.	Par.	Appr.	result
4	3	3.63e4	7.46e4	0.303	0.317	1.128	2.60e4	$5.99\mathrm{e}4$	0.202	0.205	0.179	False
4	5	5.62e4	1.15e5	0.524	0.592	0.325	4.01e4	9.26e4	0.411	0.503	0.280	False
4	10	1.06e5	2.18e5	0.721	0.668	0.459	7.55e4	1.74e5	0.525	0.512	0.364	False
5	3	1.55e6	5.91e6	2.146	1.257	0.981	1.09e6	4.65e6	1.513	1.003	0.583	False
6	3	7.61e7	4.98e8	5.232	3.228	1.892	5.34e7	3.82e8	4.986	2.427	1.092	False
7	3]	model gei	neration	timeout	;	model generation timeout					

Verification of $\varphi_{vuln,i,k}$ for the first candidate (i = 1) and k = #R - 1 revotes

#Ag	#R		Fι	el			Regult					
		#st	#tr	Seq.	Par.	Appr.	#st	#tr	Seq.	Par.	Appr.	rtesuit
4	3	$3.63\mathrm{e}4$	7.46e4	0.302	0.311	0.180	2.60e4	5.99e4	0.201	0.213	0.126	False
4	5	$5.62\mathrm{e4}$	1.15e5	0.519	0.584	0.310	4.01e4	9.26e4	0.410	0.475	0.283	False
4	10	1.06e5	2.18e5	0.742	0.627	0.462	7.55e4	1.74e5	0.558	0.544	0.370	False
5	3	1.55e6	5.91e6	2.160	1.358	0.942	1.09e6	4.65e6	1.621	1.009	0.519	False
6	3	7.61e7	4.98e8	5.504	3.516	1.903	5.34e7	3.82e8	5.110	2.380	1.112	False
7	3]	model gei	neration	timeout		model generation timeout					

Verification of $\varphi_{vuln,i,k}$ for the last candidate (i = #C) and k = #R - 1 revotes

- DominoDFS and alternative distributed algorithm performed much slower and are omitted from the results
- Parallel verification performs quite well in most cases
- Performance of the parallel algorithm depends heavily on the structure of the model
- The fixpoint approximation performs well in cases where no strategy can be found

Conclusions

Modal logics for MAS are characterized by high computational complexity.

We used the "all out" approach, verifying a genuine protocol for secure voting.

Partial-order reductions, simple DFS, simple distributed DFS and fixpoint approximation show very promising performance.

Thank you for your attention!