Verification of Multi-Agent
Properties In Electronic
Voting: A Case Study

Damian Kurpiewski, Wojciech Jamroga, tukasz Masko, tukasz Mikulski, Wojciech
Penczek, Teofil Sidoruk

The problem

* Verification of strategic abilities under
imperfect information

* Logic: ATL;;,

* Complexity: AS, — complete

Agents

—

e Casts her vote
e Decides to show (or not) her vote to the Coercer

e CoOercer

e Gets (or not) the vote from the Voter
e Decides to punish (or not) the Voter

1 Voter

1 Coercer
2 Candidates

(wait, —)

N

(wait, —)

K coercer » G(finishy —» (mpuny V votey ;))

finish; finish; finish; finish; finish; finish; finish; finish;
vote; 1 vote; 1 vote; 1 vote; 1 vote; » vote; > vote; > vote; »
pun; pun; pun; pun;

(wait, —)

K coercer » G(finishy —» (mpuny V votey ;))

9 TRUE

vote; »
o —
$ \
N 2
/ =

finish; finish; finish; finish; finish; finish; finish; finish;
vote; 1 vote; 1 vote; 1 vote; 1 vote; » vote; > vote; > vote; »
pun; pun; pun; pun;

2 Voters, 1 Coercer, 2 Candidates

Fixpoint approximations

DFS and DominoDFS strategy synthesis

The
solution(?)

Parallel DFS strategy synthesis

Partial-order reductions

e Fixpoint computation is (usually) efficient

* Fixpoint equivalences do not hold for ATL;,

Fixpoint

3 pproxi mations * Lower bound: translation to AEuC

* Upper bound: ATL;, (perfect information)

e Sometimes bounds don’t match

e Recursive search from the initial state

* Synthesize winning strategy during the search

DES strategy
synthesis

Better than exhaustive search through the entire
strategy space

Handling epistemic classes can be troublesome

 DFS + domination relations

DominoDFES * Observation: some strategies dominate others
strategy synthesis

 Dominated strategies can be omitted during the
search

* Main problems to consider:

* It is difficult (if not impossible) to split the model data
between processes

* Epistemic classes can join states in different parts of the
model

Para | |e| D FS * Backtracing is not as simple as it seems

strategy synthesis

» Several different approaches to parallelization

* Best promising approach:
* Split the work early (preferably from the initial state)
e Each proces has own copy of the whole model
* Split by agent-controlled transitions

* Asynchronous models

Partial-order * State-space explosion related to interlacing
reductions

e Effective reduction methods exists for LTL and can be
adapted to ATL;,

Selene e-voting
Protocol Model

Case Study i

~

Y il

— -
o= <>

Election Coerced

. Coercer
Authority Voter
s 2 ~ N e 2 r)
Interacts only with
Generates)
Interacts with the coerced voters,
trackers and sends Casts her vote .
Coercer telling them the
them to voters ;
desired vote
_ J N\ J N J _ J
e N . B - a r N
Collects votes and Uses tracker to Casts her vote G?rt:;rzggizzzrs
publishes them check the WBB
voters
N\ J g J N Y, _ J
4 N\ 4)\ 4)\
Serves as the Web Can generate false Can punish
) tracker and show
Bulletin Board . coerced voters
it to the Coercer

_ J _ J N\ Y,

Re-voting scheme

Coerced voter can vote several times

Each vote, apart from the last one, is shared with
the coercer

Last vote (if cast) is private

Coerced Voter (3 candidates, 3 revotes)

Agent VoterC[1]:

init start

shared coercel_alD: start -> coerced [alD_required=1]

shared coerce2_alD: start -> coerced [alD_required=2]

shared coerce3_alD: start -> coerced [alD_required=3]

select_votel: coerced -> prepared [alD_vote=1, alD_prep_vote=1]

select_vote2: coerced -> prepared [alD_vote=2, alD_prep_vote=2]

select_vote3: coerced -> prepared [alD_vote=3, alD_prep_vote=3]

shared is_ready: prepared -> ready

shared start_voting: ready -> voting

shared alD_vote: voting -> vote [Coercerl_alD_vote=?alD_vote, Coercerl_alD_revote=?alD_revote]
shared send_vote_alD: vote -> send

revote_vote_1: send -[alD_revote==1]> voting [alD_vote=?alD_required, alD_revote=2]
skip_revote_1: send -[alD_revote==1]> votingf

revote_vote_2: send -[alD_revote==2]> voting [alD_vote=?alD_required, alD_revote=3]
skip_revote_2: send -[alD_revote==2]> votingf

final_vote: send -[alD_revote==3]> votingf [alD_vote=?alD_prep_vote]

skip_final: send -[alD_revote==3]> votingf

shared send_fvote_alD: votingf -> sendf

shared finish_voting: sendf -> finish

shared send_tracker_alD: finish -> tracker

shared finish_sending_trackers: tracker -> trackers_sent

shared givel_alD: trackers_sent -> interact [Coercerl_alD _tracker=1]

shared give2_alD: trackers_sent -> interact [Coercerl_alD _tracker=2]

shared not_give_alD: trackers_sent -> interact [Coercerl_alD_tracker=0]

shared punish_alD: interact -> ckeck [alD_punish=true]

shared not_punish_alD: interact -> check [alD_punish=false]

shared check_trackerl_alD: check -> end

shared check_tracker2_alD: check -> end

PROTOCOL: [[coercel_alD, coerce2 alD, coerce3_alD], [punish, not_punish]]

Formula

Poumik = ({Coercer))G((end Arevote,, =k Avoted,; = i) > Keoercervoted,; = i)

Configurations:

 First candidate (i = 1) and k = #R revotes

e Last candidate (i = #C) and k = #R revotes
 First candidate (i = 1) and k = #R — 1 revotes
e Last candidate (i = #C) and k = #R — 1 revotes

Full Model Reduced Model

#A #R #st. Hir Seq. | Par. | Appr. #st #tr Seq. | Par. | Appr. Result
4 3 3.63e4 | 7.46e4 | 0.003 | 0.009 | 1.121 | 2.60e4 | 5.99e4 | 0.001 | 0.002 | 0.184 | True
4 5 5H.62e4 | 1.15e5 | 0.004 | 0.003 | 0.345 | 4.01led | 9.26e4 | 0.002 | 0.002 | 0.283 True
4 10 | 1.06ed | 2.18e5 | 0.009 | 0.005 | 0.691 | 7.55e4 | 1.74e5 | 0.004 | 0.002 | 0.563 True
D 3 1.55e6 | 5.91e6 | 0.158 | 0.004 | 14.78 | 1.09e6 | 4.65e6 | 0.112 | 0.021 | 12.99 True
6 3 7.61e7 | 4.98e8 | 0.524 | 0.051 | 41.24 | 5.34e7 | 3.82e8 | 0.427 | 0.042 | 37.35 True
7 3 model generation timeout model generation timeout -

Table 1

Verification of @yuin, ik for the first candidate (¢ = 1) and k£ = # R revotes

Full Model Reduced Model

#Ag #R Hst #tr Seq. | Par. | Appr. H#st Htr Seq. | Par. | Appr. Result
4 3 3.63e4 | 7.46e4 | 0.003 | 0.010 | 1.103 | 2.60e4 | 5.99e4 | 0.002 | 0.003 | 0.166 True
4 5) 5.62e4 | 1.15e5 | 0.004 | 0.005 | 0.348 | 4.01ed | 9.26e4 | 0.003 | 0.003 | 0.280 True
4 10 | 1.06e5 | 2.18e5 | 0.008 | 0.009 | 0.700 | 7.55e4 | 1.74eb | 0.005 | 0.004 | 0.567 True
D 3 1.55e6 | 5.91e6 | 0.160 | 0.055 | 14.03 | 1.09e6 | 4.65e6 | 0.112 | 0.053 | 12.49 True
6 3 7.61e7 | 4.98e8 | 0.602 | 0.083 | 42.44 | 5.34e7 | 3.82e8 | 0.501 | 0.057 | 38.20 True
7 3 model generation timeout model generation timeout -

Table 2

Verification of ;1,1 for the last candidate (i = #C') and k = # R revotes

Full Model Reduced Model

#Ag #R #st #tr Seq. | Par. | Appr. H#st H#tr Seq. | Par. | Appr. Result
4 3 3.63e4 | 7.46e4 | 0.303 | 0.317 | 1.128 | 2.60e4 | 5.99¢4 | 0.202 | 0.205 | 0.179 | False
4 5) 5.62e4 | 1.15ed | 0.524 | 0.592 | 0.325 | 4.0led | 9.26e4 | 0.411 | 0.503 | 0.280 | False
4 10 | 1.06e5 | 2.18e5H | 0.721 | 0.668 | 0.459 | 7.55ed | 1.74ed | 0.525 | 0.512 | 0.364 | False
D 3 1.55e6 | 5.91e6 | 2.146 | 1.257 | 0.981 | 1.09e6 | 4.65e6 | 1.513 | 1.003 | 0.583 | False
6 3 7.61e7 | 4.98e8 | 5.232 | 3.228 | 1.892 | 5.34e7 | 3.82e8 | 4.986 | 2.427 | 1.092 | False
7 3 model generation timeout model generation timeout -

Table 3

Verification of @y uin. ik for the first candidate (¢ = 1) and k£ = # R — 1 revotes

Full Model

Reduced Model

#Ag #R #st. Htr Seq. Par. | Appr. Hst H#tr Seq. Par. | Appr. Result
4 3 3.63e4 | 7.46e4 | 0.302 | 0.311 | 0.180 | 2.60e4 | 5.99e4 | 0.201 | 0.213 | 0.126 | False
4 5) 5.62e4 | 1.15e5 | 0.519 | 0.584 | 0.310 | 4.0led | 9.26e4 | 0.410 | 0.475 | 0.283 | False
4 10 | 1.06ed | 2.18ed | 0.742 | 0.627 | 0.462 | 7.55ed | 1.74ed | 0.558 | 0.544 | 0.370 | False
D 3 1.55e6 | 5.91e6 | 2.160 | 1.358 | 0.942 | 1.09e6 | 4.65e6 | 1.621 | 1.009 | 0.519 | False
6 3 7.61e7 | 4.98e8 | 5.504 | 3.516 | 1.903 | 5.34e7 | 3.82e8 | 5.110 | 2.380 | 1.112 | False
7 3 model generation timeout model generation timeout -

Table 4

Verification of @yuin.i.x for the last candidate (1 = #C') and k£ = # R — 1 revotes

Results

* DominoDFS and alternative distributed algorithm performed much
slower and are omitted from the results

 Parallel verification performs quite well in most cases

* Performance of the parallel algorithm depends heavily on the
structure of the model

* The fixpoint approximation performs well in cases where no strategy
can be found

Conclusions

g Modal logics for MAS are characterized by high computational
complexity.

\/ We used the ,all out” approach, verifying a genuine protocol for
secure voting.

O Partial-order reductions, simple DFS, simple distributed DFS and
< fixpoint approximation show very promising performance.

attention

S
O
(€
D)
O
>~
7
C
qe)
C
_I

your

	Slajd 1: Verification of Multi-Agent Properties in Electronic Voting: A Case Study
	Slajd 2: The problem
	Slajd 3: Simple Voting Model
	Slajd 4: Agents
	Slajd 5: 1 Voter 1 Coercer 2 Candidates
	Slajd 6
	Slajd 7
	Slajd 8: 2 Voters, 1 Coercer, 2 Candidates
	Slajd 9: The solution(?)
	Slajd 10: Fixpoint approximations
	Slajd 11: DFS strategy synthesis
	Slajd 12: DominoDFS strategy synthesis
	Slajd 13: Parallel DFS strategy synthesis
	Slajd 14: Partial-order reductions
	Slajd 15: Selene e-voting Protocol Model
	Slajd 16: Agents
	Slajd 17: Re-voting scheme
	Slajd 19: Coerced Voter (3 candidates, 3 revotes)
	Slajd 20: Formula
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25: Results
	Slajd 26: Conclusions
	Slajd 27: Thank you for your attention!

