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Abstract: Social Explainable AI (SAI) is a new direction in artificial intelligence that emphasises decentralisation, trans-
parency, social context, and focus on the human users. SAI research is still at an early stage. Consequently,
it concentrates on delivering the intended functionalities, but largely ignores the possibility of unwelcome be-
haviours due to malicious or erroneous activity. We propose that, in order to capture the breadth of relevant
aspects, one can use models and logics of strategic ability, that have been developed in multi-agent systems.
Using the STV model checker, we take the first step towards the formal modelling and verification of SAI
environments, in particular of their resistance to various types of attacks by compromised AI modules.

1 INTRODUCTION

Elements of artificial intelligence have become ubiq-
uitous in daily life, being involved in social media,
car navigation, recommender algorithms for music
and films, and so on. They also provide back-end
solutions to many business processes, resulting in a
huge societal and economical impact. The idea of
Social Explainable AI (SAI) represents an interest-
ing new direction in artificial intelligence, which em-
phasises decentralisation, human-centricity, and ex-
plainability [33, 8]. This is in line with the trend to
move away from classical, centralised machine learn-
ing, not only for purely technical reasons such as scal-
ability constraints, but also to meet the growing ethi-
cal expectations regarding transparency and trustwor-
thiness of data storage and computation [10, 28]. The
aim is also to put the human again in the spotlight,
rather than concentrate on the technological infras-
tructure [7, 34, 12].

SAI is a new concept, and a subject of ongoing
research. It still remains to be seen if it delivers AI
solutions that are effective, transparent, and mindful
of the user. To this end, it should be extensively stud-
ied not only in the context of its intended properties,
but also the possible side effects of interaction that in-
volves AI components and human users in a complex
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environment. In particular, we should carefully anal-
yse the possibilities of adversarial misuse and abuse
of the interaction, e.g., by means of impersonation or
man-in-the-middle attacks [9, 13]. In those scenar-
ios, one or more nodes of the interaction network are
taken over by a malicious party that tries to disrupt
communication, corrupt data, and/or spread false in-
formation. Clearly, the design of Social AI must be
resistant to such abuse; otherwise it will be sooner or
later exploited. While the topic of adversarial attacks
on machine learning algorithms has recently become
popular [14, 20, 22], the research on SAI has so far
focused only on its expected functionalities. This is
probably because SAI communities are bound to be
conceptually, computationally, and socially complex.
A comprehensive study of their possible unintended
behaviors is a highly challenging task.

Here, we propose that formal methods for multi-
agent systems [35, 31] provide a good framework for
multifaceted analysis of Social Explainable AI. More-
over, we put forward a new methodology for such
studies, based on the following hypotheses:

1. It is essential to formalise and evaluate multi-
agent properties of SAI environments. In particu-
lar, we must look at the properties of interaction
between SAI components that go beyond joint,
fully orchestrated action towards a common pre-
defined goal. This may include various relevant
functionality and safety requirements. In partic-
ular, we should assess the impact of adversarial



play on these requirements.

2. Many of those properties are underpinned by
strategic ability of agents and their groups to
achieve their goals [29, 2, 5]. In particular, many
functionality properties refer to the ability of legit-
imate users to complete their selected tasks. Con-
versely, safety and security requirements can be
often phrased in terms of the inability of the “bad
guys” to disrupt the behavior of the system.

3. Model checking [6] provides a well-defined for-
mal framework for the analysis. Moreover, exist-
ing model checking tools for multi-agent systems,
such as MCMAS [26] and STV [25] can be used
to formally model, visualise, and analyse SAI de-
signs with respect to the relevant properties.

4. Conversely, SAI can be used as a testbed for
cutting-edge methods of model checking and their
implementations.

In the rest of this paper, we make the first step
towards formal modelling, specification, and verifi-
cation of SAI. We model SAI by means of asyn-
chronous multi-agent systems (AMAS) [17], and for-
malise their properties using formulas of temporal-
strategic logic ATL∗ [2, 30]. For instance, one can
specify that a malicious AI component can ensure
that the remaining components will never be able to
build a global model of desired quality, even if they
all work together against the rogue component. Alter-
natively, strategies of the “good” modules can be con-
sidered, in order to check whether a certain thresh-
old of non-compromised agents is sufficient to pre-
vent a specific type of attack. Finally, we use the STV
model checker [25] to verify the formalised proper-
ties against the constructed models. The verification
is done by means of the technique of fixpoint approx-
imation, proposed and studied in [18].

Note that this study does not aim at focused in-
depth verification of a specific machine learning pro-
cedure, like in [36, 3, 21, 1]. Our goal is to represent
and analyse a broad spectrum of interactions, possi-
bly at the price of abstraction that leaves many details
out of the formal model.

The ideas, reported here, are still work in progress,
and the results should be treated as preliminary.

2 SOCIAL EXPLAINABLE AI

The framework of Social Explainable AI or SAI [33,
8, 12] aims to address several drawbacks inherent to
the currently dominant AI paradigm. In particular,
state of the art machine learning (ML)-based AI sys-
tems are typically centralised. The sheer scale of Big

Data collections, as well as the complexity of deep
neural networks that process them, mean that effec-
tively these AI systems act as opaque black boxes,
non-interpretable even for experts. This naturally
raises issues of privacy and trustworthiness, further
exacerbated by the fact that storing an ever-increasing
amount of sensitive data in a single, central location
might eventually become unfeasible, also for non-
technical reasons such as local regulations regarding
data ownership.

In contrast, SAI envisions novel ML-based AI sys-
tems with a focus on the following aspects:

• Individuation: a “Personal AI Valet” (PAIV) asso-
ciated with each individual, acting as their proxy
in a complex ecosystem of interacting PAIVs;

• Personalisation: processing data by PAIVs via ex-
plainable AI models tailored to the specific char-
acteristics of individuals;

• Purposeful interaction: PAIVs build global AI
models or make collective decisions starting from
the local models by interacting with one another;

• Human-centricity: AI algorithms and PAIV inter-
actions driven by quantifiable models of the indi-
vidual and social behaviour of their human users;

• Explainability by design: extending ML tech-
niques through quantifiable human behavioural
models and network science analysis.

The current attempts at building SAI use gossip
learning as the ML regime for PAIVs [32, 15, 16].
An experimental simulation tool to assess the effec-
tiveness of the process and functionality of the result-
ing AI components is available in [27]. In this paper,
we take a different path, and focus on the multi-agent
interaction in the learning process. We model the net-
work of PAIVs as an asynchronous multi-agent sys-
tem (AMAS), and formalise its properties as formulas
of alternating-time temporal logic (ATL∗). The for-
mal framework is introduced in Section 3. In Sec-
tion 4, we present preliminary multi-agent models of
SAI, and show several attacks that can be modelled
that way. In Section 5, we formalise several proper-
ties and conduct model checking experiments.

3 WHAT AGENTS CAN ACHIEVE

In this section, we introduce the formalism of Asyn-
chronous Multi-agent Systems (AMAS) [17, 19], as
well as the syntax and semantics of Alternating-time
Temporal Logic ATL∗ [2, 30], which allows for spec-
ifying relevant properties of SAI models, in particular
the strategic ability of agents to enforce a goal.



3.1 Asynchronous MAS

AMAS can be thought of as networks of automata,
where each component corresponds to a single agent.

Definition 1 (AMAS [19]). An asynchronous multi-
agent system (AMAS) consists of n agents A =
{1, . . . ,n}, each associated with a 7-tuple Ai =
(Li, ιi,Evti,Ri,Ti,PV i,Vi), where:

• Li = {l1
i , . . . , l

ni
i } 6= /0 is a finite set of local states;

• ιi ∈ Li is an initial local state;
• Evti = {e1

i , . . . ,e
mi
i } 6= /0 a finite set of events;

• Ri : Li→ 2Evti \{ /0} is a repertoire of choices, as-
signing available subsets of events to local states;

• Ti : Li × Evti ⇀ Li is a (partial) local transi-
tion function that indicates the result of executing
event e in state l from the perspective of agent i.
Ti(li,e) is defined iff e ∈

⋃
Ri(li);

• PV i is a set of the agent’s local propositions, with
PV j, PVk (for j 6= k ∈ A) assumed to be disjoint;

• Vi : Li→ P (PV i) is a valuation function.

Furthermore, we denote:

• by Evt =
⋃

i∈A Evti, the set of all events;
• by L =

⋃
i∈A Li, the set of all local states;

• by Agent(e) = {i ∈ A | e ∈ Evti}, the set of all
agents which have event e in their repertoires;

• by PV =
⋃

i∈A PV i the set of all local propositions.

The model of an AMAS provides its execution
semantics with asynchronous interleaving of private
events and synchronisation on shared ones.

Definition 2 (Model [19]). The model of an AMAS is
a 5-tuple M = (A ,S, ι,T,V ), where:

• A is the set of agents;
• S⊆ L1× . . .×Ln is the set of global states, includ-

ing all states reachable from ι by T (see below);
• ι = (ι1, . . . , ιn) ∈ S is the initial global state;
• T : S × Evt ∪ {ε} ⇀ S is the (partial) global

transition function, defined by T (s1,e) = s2 iff
Ti(si

1,e) = si
2 for all i ∈ Agent(e) and si

1 = si
2 for

all i ∈ A \ Agent(e), where si
j ∈ Li is agent i’s

local component of s j. Moreover, T (s,ε) = s iff
there are events e1, . . . ,en st. Ti(si,ei) is defined
but none of e1, . . . ,en is selected by all its owners;

• V : S→ 2PV is the global valuation function, de-
fined as V (l1, . . . , ln) =

⋃
i∈A Vi(li).

3.2 Strategic Ability

Linear and branching-time temporal logics, such as
LTL and CTL? [11], have long been used in formal
verification. They enable to express properties about

how the state of the system will (or should) evolve
over time. However, in systems that involve au-
tonomous agents, whether representing human users
or AI components it is usually of interest who can di-
rect its evolution a particular way.

ATL∗ [2] extends temporal logics with strategic
modalities that allow for reasoning about such prop-
erties. The operator 〈〈A〉〉γ says that agents in group
(coalition) A have a strategy to enforce property γ.
That is, as long as agents in A select events according
to the strategy, γ will hold no matter what the other
agents do. ATL∗ has been one of the most important
and popular agent logics in the last 25 years.

Definition 3 (Syntax of ATL∗). The language of
ATL∗ is defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ∧ γ | Xγ | γUγ,

where p ∈ PV and A⊆ A . The definitions of Boolean
connectives and temporal operators X (“next”) and
U (“strong until”) are standard; remaining operators
R (“release”), G (“always”), and F (“sometime”)
can be derived as usual.

Various types of strategies can be defined, based
on the state information and memory of past states
available to agents [30]. In this work, we focus on
imperfect information, imperfect recall strategies.

Definition 4 (Strategy). A memoryless imperfect in-
formation strategy for agent i ∈ A is a function
σi : Li→ 2Evti \ /0 such that σi(l)∈Ri(l) for each local
state l ∈ Li. A joint strategy σA of coalition A ⊆ A is
a tuple of strategies σi, one for each agent i ∈ A.

The outcome set of a strategy collects all the
execution paths consistent with the strategy. For-
mally, outM(s,σA) collects all the infinite sequences
of states, starting from s, that may occur when the
coalition follows strategy σA while the opponents
choose freely from their repertoires. We use the so
called opponent-reactive outcome, where the oppo-
nents are assumed to respond with matching synchro-
nization events if such responses are available. The
interested reader is referred to [19, 24] for the discus-
sion and technical details.

Definition 5 (Asynchronous semantics of ATL∗
[17]). The asynchronous semantics of the strategic
modality in ATL∗ is defined by the following clause:
M,s |= 〈〈A〉〉γ iff there is a strategy σA such that
outM(s,σA) 6= /0 and, for each path π ∈ outM(s,σA),
we have M,π |= γ.
The remaining clauses for temporal operators and
Boolean connectives are standard, see [11].
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start gathering

[AI1 data< 1] stop gathering
AI1 data= 0,AI1 completion= 1

[1<= AI1 data< 2] stop gathering
AI1 data= 0,AI1 completion= 2

[2<= AI1 data] stop gathering
AI1 data= 0,AI1 completion= 3

skip gathering

start
learning

[AI1 info< 1∧AI1 mqual> 0] stop learning
AI1 info= 0,AI1 mstatus= 1,AI1 mqual−= 1

[AI1 info< 1∧AI1 mqual≤ 0] stop learning
AI1 info= 0,AI1 mstatus= 1

[1≤ AI1 info< 2∧AI1 mqual< 2] stop learning
AI1 info= 0,AI1 mstatus= 2,AI1 mqual+= 1

[1≤ AI1 info< 2∧AI1 mqual≥ 2] stop learning
AI1 info= 0,AI1 mstatus= 2

[2≤ AI1 info∧AI1 mqual> 0] stop learning
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Agent AI1 :
i n i t : s t a r t

%% - - - Phase1 : G a t h e r i n g da ta - - -
s t a r t g a t h e r i n g d a t a : s t a r t -> g a t h e r
g a t h e r d a t a : g a t h e r - [ AI1 da ta <2]> g a t h e r

[ A I 1 d a t a +=1]
%% 1 : I n c o m p l e t e d a t a
s t o p g a t h e r i n g d a t a : g a t h e r - [ A I 1 d a t a < 1]> d a t a r e a d y

[ A I 1 d a t a =0 , A I 1 d a t a c o m p l e t i o n =1]
%% 2 : Complete d a t a
s t o p g a t h e r i n g d a t a : g a t h e r - [ 1 <= A I 1 d a t a < 2]> d a t a r e a d y

[ A I 1 d a t a =0 , A I 1 d a t a c o m p l e t i o n =2]
%% 3 : Too much d a t a
s t o p g a t h e r i n g d a t a : g a t h e r - [ 2 <= A I 1 d a t a ]> d a t a r e a d y

[ A I 1 d a t a =0 , A I 1 d a t a c o m p l e t i o n =3]
s k i p g a t h e r i n g d a t a : s t a r t -> d a t a r e a d y

%% - - - Phase2 : L e a r n i n g ( b u i l d i n g l o c a l model ) - - -
s t a r t l e a r n i n g : d a t a r e a d y -> l e a r n
k e e p l e a r n i n g : l e a r n - [ A I 1 i n f o r m a t i o n < 2]> l e a r n

[ A I 1 i n f o r m a t i o n += A I 1 d a t a c o m p l e t i o n ]
%% 1 : I n c o m p l e t e model
s t o p l e a r n i n g : l e a r n

- [ A I 1 i n f o r m a t i o n < 1 and A I 1 m o d e l q u a l i t y > 0]> e d u c a t e d
[ A I 1 i n f o r m a t i o n =0 , A I 1 m o d e l s t a t u s =1 , A I 1 m o d e l q u a l i t y - = 1 ]

s t o p l e a r n i n g : l e a r n
- [ A I 1 i n f o r m a t i o n < 1 and A I 1 m o d e l q u a l i t y <= 0]> e d u c a t e d
[ A I 1 i n f o r m a t i o n =0 , A I 1 m o d e l s t a t u s =1]

%% 2 : Complete model
s t o p l e a r n i n g : l e a r n

- [ 1 <= A I 1 i n f o r m a t i o n < 2 and A I 1 m o d e l q u a l i t y < 2]> e d u c a t e d
[ A I 1 i n f o r m a t i o n =0 , A I 1 m o d e l s t a t u s =2 , A I 1 m o d e l q u a l i t y +=1]

s t o p l e a r n i n g : l e a r n
- [ 1 <= A I 1 i n f o r m a t i o n < 2 and A I 1 m o d e l q u a l i t y >= 2]> e d u c a t e d
[ A I 1 i n f o r m a t i o n =0 , A I 1 m o d e l s t a t u s =2]

%% 3 : O v e r t r a i n e d model
s t o p l e a r n i n g : l e a r n

- [ 2 <= A I 1 i n f o r m a t i o n and A I 1 m o d e l q u a l i t y > 0]> e d u c a t e d
[ A I 1 i n f o r m a t i o n =0 , A I 1 m o d e l s t a t u s =3 , A I 1 m o d e l q u a l i t y - = 1 ]

s t o p l e a r n i n g : l e a r n
- [ 2 <= A I 1 i n f o r m a t i o n and A I 1 m o d e l q u a l i t y <= 0]> e d u c a t e d
[ A I 1 i n f o r m a t i o n =0 , A I 1 m o d e l s t a t u s =3]

s k i p l e a r n i n g : d a t a r e a d y -> s h a r i n g
%% - - - Phase3 : S h a r i n g l o c a l models - - -
s t a r t s h a r i n g : e d u c a t e d -> s h a r i n g

%% Share l o c a l model and g e t a v e r a g e q u a l i t y o f bo th models
%% r e c e i v e l e f t
s h a r e d s h a r e 3 w i t h 1 : s h a r i n g -> s h a r i n g 2

[ A I 1 m o d e l q u a l i t y=%A I 3 m o d e l q u a l i t y ]
%% send r i g h t
s h a r e d s h a r e 1 w i t h 2 : s h a r i n g 2 -> s h a r i n g 3
e n d s h a r i n g : s h a r i n g 3 -> end

%% - - - Phase4 : End - - -
w a i t : end -> end
r e p e a t : end -> l e a r n

Figure 1: Honest AI agent: AMAS (left) and its specification in STV (right)

Figure 2: Visualization of honest AI in STV

4 MODELS

The first step towards the verification of the interac-
tion between agents in Social Explainable AI is a thor-
ough and detailed analysis of the underlying protocol.
We begin by looking into the actions performed and
the messages exchanged by the machines that take
part in the learning phase. Then, we can start design-
ing multi-agent models. Usually, such systems are too
complex to be modelled as they are. In that case, we
create an abstract view of the system.

4.1 Agents

In this work, we focus on the learning phase of the
SAI protocol. We model each machine equipped with
an AI module as a separate agent. The local model of
an AI agent consists of three phases: the data gather-
ing phase, the learning phase and the sharing phase.
Data gathering phase. In this phase, the agent is



Agent Mim:
i n i t : s t a r t
s h a r e d s h a r e 1 w i t h m i m : s t a r t -> s t a r t

[ Mi m mo de l qu a l i t y = A I 1 m o d e l q u a l i t y ]

s h a r e d s h a r e m i m w i t h 1 : s t a r t -> s t a r t

s h a r e d s h a r e 2 w i t h m i m : s t a r t -> s t a r t
[ Mi m mo de l qu a l i t y = A I 2 m o d e l q u a l i t y ]

s h a r e d s h a r e m i m w i t h 2 : s t a r t -> s t a r t

Figure 3: Specification of the Man in the Middle agent

q0

Mim model quality = AI1 model quality
share 1 with mim

share 2 with mim
Mim model quality = AI2 model quality

share mim with 1 share mim with 2

Figure 4: Graphical representation of Man in the Middle

able to gather the data required for the learning phase.
The corresponding action can be performed multiple
times, each time increasing the local variable that rep-
resents the amount of gathered data. At the end of the
phase, the amount of gathered data is analysed and,
depending on the exact value, the agent’s prepara-
tion is marked as incomplete, complete, or excessive.
From this, the agent proceeds to the learning phase.
Learning phase. Here, the agent can use the previ-
ously gathered data to train its local AI model. The
effectiveness of the training depends on the amount
of gathered data. Excessive data means that the model
can be easily overtrained, while insufficient data may
lead to more iterations required to properly train the
model. The training action can be performed multiple
times each time increasing the local variable related
to the quality of the model. At the end of this phase
the internal AI model can be overtrained, undertrained
or properly trained. After this phase, the agent is re-
quired to share its model with other agents.
Sharing phase. Agents share their local AI mod-
els with each other following a simple sharing pro-
tocol. The protocol is based on packet traversal in the
ring topology. Each agent receives the model from
the agent with previous ID and sends its model to
the agent with next ID, while the last agent shares its
model with the first agent to close the ring. In order
to avoid any deadlocks, each agent with odd ID first
receives the model and then sends its own, and each
agent with even ID first sends its own model and then
receives the model from the agent before him.

When receiving the model, the agent can either
accept it or reject it, and its decision is based on the
quality of the model being shared. After accepting
the model, the agent merges it with its own and the

Agent AI2 :
i n i t : s t a r t
s e t q u a l i t y 0 : s t a r t -> s e t q u a l i t y

[ A I 2 m o d e l q u a l i t y =0]

s e t q u a l i t y 1 : s t a r t -> s e t q u a l i t y
[ A I 2 m o d e l q u a l i t y =1]

s e t q u a l i t y 2 : s t a r t -> s e t q u a l i t y
[ A I 2 m o d e l q u a l i t y =2]

s h a r e d s h a r e 2 w i t h 3 : s e t q u a l i t y -> s h a r i n g
s h a r e d s h a r e 1 w i t h 2 : s h a r i n g -> s t a r t

Figure 5: Specification of the Impersonator agent

Figure 6: Graphical representation of Impersonator in STV

resulting model quality is the maximum of the two.
After the sharing phase, the agent can go back to

the learning phase to further train its model.
To formalize the details of the procedure, we have

utilised the open-source experimental model checker
STV [25], which was used, e.g., to model and ver-
ify the real-world voting protocol Selene [24]. Fig-
ure 1 presents a detailed representation of an honest
AI component as an AMAS (left) and the STV code
specifying its behavior (right). Figure 2 shows the vi-
sualization of the component, produced by the tool.

4.2 Attacks

The model described in Section 4.1 reflects the ideal
scenario in which each agent is honest and directly
follows the protocol. Of course, it is not always the
case. A machine can malfunction, and take actions
not permitted by the protocol. Also, an agent can be
infected by malicious software, and function improp-
erly. This leads to two possible attack scenarios: the
man in the middle attack and the impersonator attack.
Man in the middle. Assume the existence of an-
other, dishonest agent, called the intruder. This agent
does not participate in the data gathering and learning
phases, but it is particularly interested in the sharing
phase. The intruder can intercept any model that is
being sent by one of the honest agents and then pass
it to any other agent. The STV code for the man-in-
the-middle attacker is presented in Figure 3, and its
graphical representation in Figure 4.
Impersonator. In this scenario, one of the AI agents
is infected with malicious code that results in un-
wanted behavior. The agent cannot participate in the



Figure 7: Model of SAI with one honest agent

Figure 8: Model of SAI with two honest agents

data gathering or learning phases, but can share its
model with others following the sharing protocol. The
difference between the honest agent and the imper-
sonator is that the latter can fake the quality of its local
AI model, hence tricking the next agent into accepting
it. The STV code and its visualization for Imperson-
ator are presented in Figures 5 and 6.

5 EXPERIMENTS

The STV tool can be used to combine the modules
presented in Figures 1–6, and generate the global
model of interaction. We present the output in Fig-

ures 7 (for the system with one honest AI agent) and 8
(for two honest agents). The models provide invalu-
able insights into the structure of possible interac-
tions. Still, a visual scrutiny is possible only in the
simplest cases due to the state-space explosion.

In more complex instances, we can use STV to
attempt an automated verification of strategic require-
ments. Since model checking of strategic ability is
hard for scenarios with partial observability (NP-hard
to undecidable, depending on the precise syntax and
semantics of the specification language [4]), exact
verification is infeasible. Instead, we use the tech-
nique of fixpoint approximation, proposed in [18], and
implemented in STV. In what follows, we summarise
the experimental results obtained that way.



#Ag #st #tr Gen Verif φ1 Verif φ2
2 886 2007 < 0.1 < 0.1/False < 0.1/True
3 79806 273548 28 151/False 202/True
4 6538103 29471247 1284 5061/False 5102/True
5 93581930 623680431 7845 25828/False 25916/True
6 timeout

Figure 9: Verification results for the Impersonator attack

Models and formulas. The scalable class of models
has been described in detail in Section 4. In the model
checking experiments, we have used two variants of
the system specification, one with a possible imper-
sonation attack, and the other one with the possibility
of a man-in-the-middle attack. In each case, we veri-
fied the following formulas:
• φ1 ≡ 〈〈I〉〉G(sharedp→ (

∧
i∈[1,n] mquali ≤ k))

• φ2 ≡ 〈〈I〉〉G(sharedp→ (
∨

i∈[1,n] mquali ≤ k))
Formula φ1 checks whether the Intruder has a strat-
egy to ensure that all honest agents will not achieve
quality greater than k. Formula φ2 checks whether the
same is possible for at least one agent.
Configuration of the experiments. The experi-
ments have been conducted with the latest version of
STV [23]. The test platform was a server equipped
with ninety-six 2.40 GHz Intel Xeon Platinum 8260
CPUs, 991 GB RAM, and 64-bit Linux.
Results. We present the verification results in Fig-
ures 9 and 10. #Ag specifies the scalability factor,
namely the number of agents in the system. #st and
#tr report the number of global states and transitions
in the resulting model of the system, and Gen gives
the time of model generation. Verif φ1 and Verif φ2
present the verification time and its output for formu-
las φ1 and φ2, respectively. All times are given in sec-
onds. The timeout was set to 8 hours.
Discussion. We were able to verify models of SAI
for up to 5 agents. The verification outcome was con-
clusive in all cases, i.e., the model checker always re-
turned either True or False. This means that we suc-
cessfully model-checked systems for up to almost a
billion transitions, which is a serious achievement for
an NP-hard verification problem. In all cases, formula
φ2 turned out to be true. That is, both impersonation
and man-in-the-middle attacks can disrupt the learn-
ing process and prevent some agents from obtaining
good quality PAIVs. At the same time, φ1 was false in
all cases. Thus, the intruder cannot disrupt all PAIVs,
even with its best attack.

6 CONCLUSIONS

In this paper, we present our work in progress on for-
mal analysis of Social Explainable AI. We propose

#Ag #st #tr Gen Verif φ1 Verif φ2
3 23966 67666 12 21/False 33/True
4 4798302 20257664 875 3810/False 3882/True
5 71529973 503249452 5688 19074/False 20103/True
6 timeout

Figure 10: Verification results for Man in the Middle

that formal methods for multi-agent systems provide
a good framework for multifaceted analysis of SAI
environments. As a proof of concept, we demonstrate
simple multi-agent models of SAI, prepared with the
model checker STV. Then, we use STV to formalize
and verify two variants of resistance to impersonation
and man-in-the-middle attacks, with very promising
results. Notably, we have been able to successfully
model-check models of systems for up to almost a
billion transitions – a considerable achievement for
an NP-hard verification problem.
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