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Abstract. Synthesis of bulletproof strategies in imperfect information
scenarios is a notoriously hard problem. In this paper, we suggest that
it is sometimes a viable alternative to aim at �reasonably good� strate-
gies instead. This makes sense not only when an ideal strategy cannot
be found due to the complexity of the problem, but also when no win-
ning strategy exists at all. We propose an algorithm for synthesis of such
�pretty good� strategies. The idea is to �rst generate a surely winning
strategy with perfect information, and then iteratively improve it with
respect to two criteria of dominance: one based on the amount of con�ict-
ing decisions in the strategy, and the other related to the tightness of its
outcome set. We focus on reachability goals and evaluate the algorithm
experimentally with very promising results.

Keywords: Strategy synthesis · imperfect information · alternating-time tem-
poral logic · model checking

1 Introduction

As the systems around us become more complex, and at the same time more
autonomous, the need for unambiguous speci�cation and automated veri�cation
rapidly increases. Many relevant properties of multi-agent systems refer to strate-
gic abilities of agents and their groups. For example, functionality requirements
can be often understood in terms of the user's ability to complete the selected
tasks. Similarly, many security properties boil down to inability of the intruder
to obtain his goals. Logics of strategic reasoning provide powerful tools to rea-
son about such aspects of MAS [3, 45, 40, 7, 8, 29]. A typical property that can
be expressed says that the group of agents A has a collective strategy to enforce

temporal property φ, no matter what the other agents in the system do. In other
words, A have a �winning strategy� that achieves φ on all its possible execution
paths.

Speci�cations in agent logics can be then used as input to model checking ,
which makes it possible to verify the correct behavior of a multi-agent system
by an automatic tool [1, 22, 27, 18, 19, 37, 34, 36]. Moreover, model checking of
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strategic formulas typically relies on synthesis of a suitable strategy to demon-
strate that such a strategy exists.

Veri�cation and reasoning about strategic abilities is di�cult for a number
of reasons. The prohibitive complexity of model checking and strategy synthe-
sis is a well known factor [10, 26, 39, 7, 8]. This can be overcome to some degree
by using e�cient symbolic methods and data structures [9, 13, 27, 44]. However,
real-life agents typically have limited capabilities of observation, action, and
reasoning. That brings additional challenges. First, the theoretical complexity of
model checking for imperfect information strategies (sometimes called uniform

strategies) ranges from NP�complete to undecidable [45, 10, 25], depending on
the precise setup of the problem. Secondly, practical attempts at veri�cation suf-
fer from state-space and transition-space explosion. Thirdly, there is no simple
�xed-point characterisation of typical properties [24, 12]. As a consequence of the
latter, most approaches to synthesis and veri�cation boil down, in the worst case,
to checking all the possible strategies [38, 16, 17, 43, 35]. Unfortunately, the strat-
egy space is huge � usually larger than the state space by orders of magnitude,
which makes brute-force search hopeless.

An interesting attempt at heuristic search through the strategy space has
been proposed in [35]. There, a concept of domination between strategies was
introduced, based on the �tightness� of the outcome sets induced by the strate-
gies. Formally, strategy s dominates s′ if the set of possible executions of s is
a strict subset of the executions of s′. The intuition is that those strategies are
better which give the agent a better grip on what is going to happen, and better
reduce the nondeterminism of the system. Then, the authors of [35] proposed
an algorithm for synthesis of uniform strategies, based on depth-�rst search
through the strategy space with simultaneous optimization of dominated par-
tial strategies. The algorithm, dubbed DominoDFS, performed with considerable
success on several benchmarks. This might have had two related reasons. First,
restricting the set of successor states reduces the possibility of encountering a
�bad� successor further on. Perhaps even more importantly, it reduces the space
of reachable states, and hence has the potential to considerably speed up the
computation.

In this paper, we take the idea of dominance-based optimization, and apply
it from a completely di�erent angle. Most importantly, we propose that search-
ing for a �reasonably good� strategy is sometimes a viable alternative to the
search for an ideal one (where �ideal� means a surely winning imperfect infor-
mation strategy). This obviously makes sense when no winning strategy exists,
but also when an ideal strategy cannot be found due to the complexity of the
problem. Moreover, we propose a procedure for synthesis of such �pretty good�
strategies. The algorithm starts with generating a surely winning strategy with
perfect information. Then, it iteratively improves it with respect to two criteria
of dominance: one based on the amount of con�icting decisions in the strategy,
and the other related to the tightness of its outcome set. It is worth noting that
this is an anytime algorithm. Thus, it always returns some strategy, provided
that a perfect information strategy has been generated in the �rst phase.
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We evaluate the algorithm experimentally on randomly generated concur-
rent game structures with imperfect information, as well as the scalable Drones
benchmark of [35]. The results are compared to the output of DominoDFS and to
the �xpoint approximation algorithm of [33], forming a very promising pattern.
In particular, for models with relatively small information sets (a.k.a. epistemic
indistinguishability classes), our algorithm was able to �nd ideal strategies where
the other approaches consistently failed. We note that, according to the theoret-
ical results proposed in [32], approaches relying on search through the space of
uniform strategies may be feasible for models with large information sets. At the
same time, they are unlikely to succeed for models with small epistemic classes.
This makes our new method a potentially good complement to algorithms like
DominoDFS.

Outline of the Paper The structure of the paper is as follows. We begin by
introducing the standard semantics of strategic ability in Section 2. We also
cite the complexity results for model checking and strategy synthesis, and recall
the notion of strategic dominance from [35] that will serve as inspiration for
our heuristics. In Section 3, we propose an abstract template for multicriterial
strategic dominance, and instantiate it by two actual dominance relations that
will provide the heuristics. Our algorithm for strategy synthesis based on iterated
improvement is presented in Section 4, and evaluated experimentally in Section 5.
We also discuss how the algorithm can be extended to synthesis of coalitional
strategies in Section 6. Finally, we conclude in Section 7.

Related Work A number of frameworks has been aimed at the veri�cation of
strategic properties under imperfect information. Regarding the available tools,
the state-of-the-art MAS model checker MCMAS [38, 37] combines e�cient sym-
bolic representation of state-space using Binary Decision Diagrams (BDDs) with
exhaustive iteration over uniform strategies. A similar approach based on exhaus-
tive search through strategy space is presented in [17]. A prototype tool SMC [43]
employs bounded unfoldings of transition relation with strategy exploration and
calls to MCMAS. Strategy search with optimisation of partial strategies has
been further used in [16, 14, 35]. Most relevant to us, the optimisation in [35]
was driven by strategic dominance based on the tightness of the outcome set.

Other recent attempts at feasible veri�cation of uniform strategies include [6,
5, 31] that propose methods for reduction of models with incomplete information,
based respectively on abstraction, bisimulation, and partial-order equivalences.
Another method [33] avoids the brute-force strategy search by using �xpoint
approximations of the input formulas. A prototype tool STV implementing the
DominoDFS algorithm and the �xpoint approximation was reported in [34].

We note that all the above approaches try to directly synthesize an ideal
(i.e., uniform surely winning) strategy for the given goal. In contrast, our new
algorithm starts with a �awed strategy (namely, surely winning but not uniform),
and attempts to do iterative improvement. As we show, this may well end up in
producing an ideal solution in cases where the other methods are inconclusive. No
less importantly, our algorithm produces reasonably good strategies even when



4 Wojciech Jamroga and Damian Kurpiewski

an ideal one cannot be found. The only related work in model checking of multi-
agent systems, that we are aware of, is [11, 4] where a theoretical framework
was proposed for reasoning about strategies that succeed on �su�ciently many�
outcome paths.

2 Preliminaries

In this section we recall the standard formal framework used for reasoning about
strategies in MAS. To this end, alternating-time temporal logic ATL [2, 3, 45] is
often used. We also recall the notion of dominance for partial strategies, that
was proposed in [35].

2.1 ATL: What Agents Can Achieve

ATL [2, 3, 45] generalizes the branching-time temporal logic CTL [21] by replac-
ing the path quanti�ers E,A with strategic modalities ⟨⟨A⟩⟩. Formulas of ATL
allow to express intuitive statements about what agents (or groups of agents)
can achieve. For example, ⟨⟨W,E⟩⟩FwinWE says that the players West and Eeast
in a game of Bridge can jointly win the game. Formally, the syntax of ATL is
de�ned by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ⟨⟨A⟩⟩Xϕ | ⟨⟨A⟩⟩Gϕ | ⟨⟨A⟩⟩ϕUϕ,

where p ∈ PV is an atomic proposition and A ⊆ Agt is a group of agents. We
read ⟨⟨A⟩⟩γ as �A can identify and execute a strategy that enforces γ,� X as �in
the next state,� G as �now and always in the future,� and U as �until.�

2.2 Models

We interpretATL [3, 45] speci�cations over a variant of transition systems where
transitions are labeled with combinations of actions, one per agent. Moreover,
epistemic relations are used to indicate states that look the same to a given
agent. Formally, an imperfect information concurrent game structure, or simply a
model, is given byM = ⟨Agt, St, PV, V,Act, d, o, {∼a| a ∈ Agt}⟩ which includes a
nonempty �nite set of agents Agt = {1, . . . , k}, a nonempty set of states St, a set
of atomic propositions PV and their valuation V : PV → 2St, and a nonempty
�nite set of (atomic) actions Act. The protocol function d : Agt × St → 2Act

de�nes nonempty sets of actions available to agents at each state; we will write
da(q) instead of d(a, q), and de�ne dA(q) =

∏
a∈A da(q) for each A ⊆ Agt, q ∈ St.

Furthermore, o is a (deterministic) transition function that assigns the outcome
state q′ = o(q, α1, . . . , αk) to each state q and tuple of actions ⟨α1, . . . , αk⟩ such
that αi ∈ di(q) for i = 1, . . . , k. Every ∼a⊆ St× St is an epistemic equivalence
relation with the intended meaning that, whenever q ∼a q

′, the states q and q′ are
indistinguishable to agent a. By [q]a we mean the set of states indistinguishable
to agent a from the state q. The model is assumed to be uniform, in the sense that
q ∼a q

′ implies da(q) = da(q
′). Note that perfect information can be modeled by

assuming each ∼a to be the identity relation.
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2.3 Strategies

A strategy of an agent a ∈ Agt is a conditional plan that speci�es what a is
going to do in every possible situation. The details of the de�nition depend on
the observational capabilities of the agent and its memory. In this paper we
consider the case of imperfect information imperfect recall strategies (sometimes
also called uniform memoryless strategies), where an agent can observe only a
part of the environment (i.e., perceives some states as indistinguishable) and
performs the same action every time a given state is reached.

Formally, a uniform strategy for a is a function σσσa : St → Act satisfying
σσσa(q) ∈ da(q) for each q ∈ St and σσσa(q) = σσσa(q

′) for each q, q′ ∈ St such that
q ∼a q

′. A collective uniform strategy σσσA for a coalition A ⊆ Agt is a tuple of
individual strategies, one per agent from A.

2.4 Outcome Paths

A path λ = q0q1q2 . . . is an in�nite sequence of states such that there is a
transition between each qi, qi+1. We use λ[i] to denote the ith position on path
λ (starting from i = 0) and λ[i, j] to denote the part of λ between positions i
and j. Function out(q,σσσa) returns the set of all paths that can result from the
execution of a strategy σσσa, beginning at state q. Formally:

out(q,σσσa) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists
⟨αi

a1
, . . . , αi

ak
⟩ such that αi

a ∈ da(qi) for every a ∈ Agt, and αi
a = σσσA|a(qi)

for every a ∈ A, and qi+1 = o(qi, α
i
a1
, . . . , αi

ak
)}.

Moreover, the function outir(q,σσσa) =
⋃

a∈A

⋃
q∼aq′

out(q′,σσσa) collects all the
outcome paths that start from states that are indistinguishable from q to at
least one agent in A.

2.5 Semantics of ATL

Given a model M and a state q, the semantics of ATL formulas is de�ned as
follows:

� M, q |= p i� q ∈ V (p),

� M, q |= ¬ϕ i� M, q ̸|= ϕ,

� M, q |= ϕ ∧ ψ i� M, q |= ϕ and M, q |= ψ,

� M, q |= ⟨⟨A⟩⟩Xϕ i� there exists a uniform strategy σσσA such that for all
λ ∈ out ir(q,σσσA) we have M,λ[1] |= ϕ,

� M, q |= ⟨⟨A⟩⟩Gϕ i� there exists a uniform σσσA such that for all λ ∈ out ir(q,σσσA)
and i ∈ N we have M,λ[i] |= ϕ,

� M, q |= ⟨⟨A⟩⟩ψUϕ i� there exists a uniform σσσA such that for all λ ∈
out ir(q,σσσA) there is i ∈ N for which M,λ[i] |= ϕ and M,λ[j] |= ψ for
all 0 ≤ j < i.
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The standard boolean operators (logical constants ⊤ and ⊥, disjunction ∨, and
implication →) are de�ned as usual. Additionally, we de�ne �now or sometime

in the future� as Fφ ≡ ⊤Uφ. It is easy to see that M, q |= ⟨⟨A⟩⟩Fϕ i� there
exists a collective uniform strategy σσσA such that, on each path λ ∈ out ir(q,σσσA),
there is a state that satis�es ϕ.

2.6 Model Checking and Strategy Synthesis

It is well known that model checking of ATL based on uniform memoryless
strategies is∆P

2 -complete with respect to the size of the explicit (global) model [45,
30, 10], i.e., on top of the usual state-space and transition-space explosion which
arises from the composition of the agents' local models. This concurs with the
results for solving imperfect information games and synthesis of winning strate-
gies, which are also known to be hard [20, 26, 41]. Note that model checkingATL
corresponds very closely to strategy synthesis for reachability/safety games. In
fact, most model checking algorithms for ATL try to build a winning strategy
when checking if such a strategy exists.

It is also known that both strategy synthesis and ATL model checking for
imperfect information are not only theoretically hard, they are also di�cult in
practice. In particular, imperfect information strategies do not admit straight-
forward �xpoint algorithms based on standard short-term ability operators [12,
23]. That makes incremental synthesis of strategies impossible, or at least di�-
cult to achieve. Some practical attempts to overcome the barrier have been re-
ported in [14�16, 28, 42, 33, 35]. Up until now, experimental results con�rm that
the initial intuition was right: model checking of strategic modalities for imper-
fect information is hard, and dealing with it requires innovative algorithms and
veri�cation techniques.

We emphasize that, at the same time, model checking for perfect information
strategies (i.e., ones that can specify di�erent choices at indistinguishable states)
is much cheaper computationally, namely P-complete in the size of the model [3].

2.7 Partial Strategies and Strategy Dominance

A partial strategy for a is a partial function σa : St ⇀ Act that can be extended
to a strategy. The domain of a partial strategy is denoted by dom(σa). The set
of all partial strategies for A ⊆ Agt is denoted by ΣA.

Let q ∈ dom(σA) for some σA ∈ ΣA. The outcome of σA from q consists of all
the maximal paths λ ∈ dom(σA)

∗ ∪ dom(σA)
ω that follow the partial strategy.

Formally we have:

λ ∈ out(q, σA) i� λ1 = q ∧ ∀i≤|λ|λi∈dom(σA)

∧ ∀i<|λ|∃β∈dAgt\A(λi)o(λi, (σA(λi), β)) = λi+1

where |λ| denotes the length (i.e., the number of states) of λ and λ is either
in�nite or cannot be extended. For each i ∈ N let λi denote the i�th element.
Let Q ⊆ dom(σA). A partial strategy σA is Q-loopless, if the set

⋃
q∈Q out(q, σA)
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contains only �nite paths. For each p ∈ PV we say that σA is p-free if V (p) ∩
dom(σA) = ∅.

In what follows, we often refer to partial strategies simply as strategies and
assume a �xed CEGM and A ⊆ Agt.

The paper [35] proposed a notion of strategic dominance de�ned with respect
to a given context. Assume that we want to compare two partial strategies σA
and σ′

A. First, we �x a context strategy σC
A , such that after executing it the

control can be given to strategy σA or σ′
A. Then, we say that σA dominates σ′

A,
i� the sets of input states4 of both strategies are equal, and the set of output
states of strategy σA is a subset of the set of output states of strategy σ′

A.

3 Two Notions of Dominance for Iterated Strategy

Improvement

In [35], partial strategies are optimized according to only one criterion, namely
the tightness of their outcome sets. In contrast, we propose to use two dimensions
for optimization: tightness of the outcome and uniformity of the actions selected
within the strategy. This is because, unlike [35], we start the synthesis with a
perfect information strategy. Thus, our algorithm optimizes strategies that can
include any number of con�icts, in the sense that it might prescribe di�erent
actions within the same information set [q]a.

3.1 Multi-Criterial Domination: Abstract Template

Consider a set of partial strategies Σ of agent a, based on the same epistemic
class of a. That is, there exists q ∈ St such that dom(σ) ⊆ [q]a for every σ ∈ Σ.
Let σ1, σ2 ∈ Σ. We begin with an abstract de�nition of domination that looks at
two criteria C1, C2. The idea is that σ2 dominates σ1 if it improves on C1 without
deteriorating with respect to C2.

De�nition 1 ((C1, C2)-domination). Let each Ci be a criterion associated with

a total order ⪯Ci on the partial strategies in Σ. The strict variant ≺Ci of the or-

dering is de�ned in the obvious way, by ⪯Ci \(⪯Ci)
−1. We say that σ1 is (C1, C2)-

dominated by σ2 i� it holds that σ1 ≺C1
σ2 and at the same time σ1 ⪯C2

σ2. ⊓⊔

De�nition 2 (Better and best domination). Consider partial strategies

σ2, σ
′
2 that both (C1, C2)-dominate σ1. We say that σ2 better (C1, C2)-dominates

σ1 i� σ′
2 ≺C1

σ2, i.e., σ2 performs better than σ′
2 with respect to the primary

criterion C1. Note: the fact that σ2 better dominates σ1 than σ′
2 does not imply

that σ2 dominates σ′
2, because σ2 may perform poorer than σ′

2 on the secondary

criterion C2.
Moreover, σ2 best dominates σ1 with respect to (C1, C2) i� it dominates σ1

and no other strategy in Σ better dominates σ1. The set of strategies that best

dominate σ1 with respect to (C1, C2) will be denoted by BestC1,C2(σ1). ⊓⊔
4 i.e., initial states of the strategy
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3.2 Outcome- and Uniformity-Dominance

In the following, we assume a shared set of input nodes In ⊆ dom(σ1), dom(σ2).
The set of states reachable from In by partial strategy σi is denoted by Reach(In, σi).
Furthermore, we de�ne the domain of relevance of σi as RDom(In, σi) = dom(σi)∩
Reach(In, σi). That is, RDom(In, σi) excludes from the domain of σi the states
that cannot be reached, and hence are irrelevant when reasoning about potential
con�icts between choices.

The outcome criterion is given by relation ⪯O(In) such that σ1 ⪯O(In) σ2
i� Reach(In, σ2) ⊆ Reach(In, σ1), i.e., σ2 has at least as tight set of reachable
outcome states as σ1.

We will now proceed to the other criterion, related to uniformity of strategies.
First, we de�ne the con�ict set of σi on states Q ⊆ St as Conflicts(Q, σi) =
{(q, q′) ∈ Q×Q | σi(q) ̸= σi(q

′)}, i.e., the set of all pairs of states from Q where
σi speci�es con�icting choices.
Now, the uniformity criterion is given by relation ⪯U(In) such that σ1 ⪯U(In) σ2
i� Conflicts(RDom(In, σ2), σ2) ⊆ Conflicts(RDom(In, σ1), σ1). In other words,
all the con�icts that σ2 encounters in its domain of relevance must also appear
in σ1 (but not necessarily vice versa).

De�nition 3 (Outcome- and uniformity-domination). We say that σ1 is
outcome-dominated by σ2 on input In i� it is (O(In),U(In))-dominated by σ2.
Likewise, σ1 is uniform-dominated by σ2 on input In i� it is (U(In),O(In))-
dominated by σ2. The concepts of better and best domination apply in a natural

way. ⊓⊔

4 Iterated Strategy Synthesis

In this section, we propose an algorithm for strategy synthesis, based on the
following idea: �rst generate a surely winning perfect information strategy (if it
exists), and then iteratively improve it with respect to the dominance relations
proposed in Section 3. Of the two relations, uniformity-dominance has higher
priority. The iterative improvement terminates when the procedure reaches a
�xpoint (i.e., no more improvement is possible anymore) or when the time limit
is exceeded. After that, the optimized strategy is returned and checked for uni-
formity.

We will now de�ne our procedure in more detail.

De�nition 4 (Input). The input of the algorithm consists of: model M , state

q in M , and formula ⟨⟨a⟩⟩Fφ. We de�ne the set of initial states as Q0 = [q]∼a ,

i.e., the states that agent a considers possible when the system is in q.

De�nition 5 (Data structures). The algorithm uses the following data struc-

tures:

� The model;
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Algorithm 1 Synthesis algorithm strat_synth(M)

Generate a winning perfect information strategy σσσ
if σσσ doesn't exist then
return false

end if
Create an empty list PStr
Create a list IS of information sets in M † σσσ
for i = 1 to |IS| do
Take the info set (i, Qi) and generate the corresponding partial strategy σi as a
restriction of σσσ to Qi and add it to PStr
Ini := Qi ∩ Reach

(
Reach(Q0,σσσ) \Qi, (σσσ \ σi)

)
RDomi := Qi ∩ Reach(Ini, σi)
Outi := Reach(Ini, σi) \ Qi

Conflictsi := Conflicts(RDomi, σi)
end for
Optimize the resulting list of partial strategies PStr
return PStr

� A list of information sets for agent a, represented by pairs (id,Qid) where

id ∈ N is the identi�er of the info set, and Qid ⊆ St is an abstraction class

of the ∼a relation;

� A list of partial strategies PStr represented by the following tuples:

(id, σid, Inid,RDomid,Conflictsid, Outid)
where id is the identi�er of the information set on which the strategy oper-

ates, σid is the current set of choices, Inid the set of input states, RDomid

is the domain of relevance of σid from Inid, Conflictsid is the current set of

con�icts, and Outid is the set of output states, i.e., the states by which σid
can pass the control to another partial strategy.

The main part of the procedure is de�ned by Algorithms 1, 2 and 3. Algo-
rithm 1 tries to generate a perfect information strategy by employing a standard
algorithm, e.g., the well-known �xpoint algorithm of [3]. If successful, it pro-
duces:

� An ordered list of epistemic indistinguishability classes, also known as infor-
mation sets, for agent a. The list is generated by means of depth-�rst search
through the transition network, starting from the initial state. Note that the
information sets are restricted to the pruning of model M by strategy σ,
denoted M † σσσ in the pseudocode. That is, only states reachable by σ from
the initial state will be taken into account when looking at potential con�icts
between a's choices;

� The ordered list of partial strategies extracted from σ, following the same
ordering that was established for the information sets.

After that, Algorithm 1 calls Algorithm 3.
Algorithm 3 proceeds in cycles. In each cycle it calls Algorithm 2, which

optimizes the partial strategies one by one, following the ordering established by
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Algorithm 2 Single sweep optimization algorithm optimize_once(PStr)

OldPStr := PStr
for i = 1 to |IS| do
repeat

OldPStri := PStr(i)
if exists σ that uniform-best dominates PStr(i) in Ini then
update PStr(i) by taking σi := σ and recomputing the sets RDomi, Outi,
and Conflictsi

end if
if exists σ that outcome-best dominates PStr(i) in Ini then
update PStr(i) by taking σi := σ and recomputing the sets RDomi, Outi,
and Conflictsi

end if
until PStr(i) = OldPStri
update σσσ with the current contents of PStr
for every j ̸= i do
update the input states of PStr(j) by Inj := Qj ∩ Reach

(
Reach(Q0,σσσ) \

Qj , (σσσ \ σj)
)

end for
end for
return PStr

Algorithm 3 Optimization algorithm optimize(PStr)

repeat
OldPStr := PStr
Pstr := optimize_once(PStr)

until timeout or (PStr = OldPStr)
return PStr

Algorithm 1. Moreover, each partial strategy is optimized �rst with respect to
the uniformity-dominance, and then according to the outcome-dominance; this
proceeds in a loop until a �xpoint is found. Algorithm 3 terminates when no
improvement has been seen in the latest iteration, or the timeout is reached.

It is worth emphasizing that, except for the �rst phase (generation of a
perfect information strategy), this is an anytime algorithm. It means that the
procedure will return some strategy even for models whose size is beyond grasp
for optimal model checking algorithms. This is a clear advantage over the existing
approaches [38, 37, 16, 14, 43, 33, 35] where the algorithms typically provide no
output even for relatively small models.

5 Experimental Evaluation

We evaluate the algorithm of Section 4 through experiments with two classes of
models: randomly generated models and the Drones benchmark of [35].
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5.1 First Benchmark: Random Models

As the �rst benchmark for our experiments, we use randomly generated models
of a given size. The models represent a single agent playing against a nonde-
terministic environment. The models are generated according to the following
procedure. First, we begin by generating a directed graph with several, ran-
domly chosen, connections. The size of the graph is given by the parameter.
Subsequently, we introduce additional connections between randomly selected
nodes from distinct paths, in order to increase the complexity of the resulting
model. Winning states are selected from the set containing the �nal states from
each of the paths.

Once the graph is generated, it is used to construct the model. Each node
represents a unique state, and a connection between two nodes indicates the
presence of at least one transition between them. The transitions are generated
using the following approach: for each node, a subset of outgoing connections is
randomly chosen. From this subset, a set of transitions is created with actions
selected randomly. As a result, some transitions will be in�uenced not only by
the agent but also by the nondeterministic environment. This process is repeated
multiple times. In the �nal step of the model generation algorithm, atomic propo-
sitions are randomly assigned to states, and epistemic classes are generated at
random.

The number of connections, actions, winning states and epistemic classes is
given as the function of the number of states in the model.

5.2 Second Benchmark: Drone Model

As the second benchmark we use the Drone Model from [35] with some minor
modi�cations. In this scenario drones are used to measure the air quality in the
speci�ed area. The motivation is clear, as nowadays many cities face a problem
of air pollution.

A model is described using three variables:

� Number of drones;
� Initial energy for each drone;
� Map size, i.e., the number of places in the area.

Every drone is equipped with a limited battery, initially charged to some
energy level. Each action that the drone performs uses one energy unit. When
the battery is depleted, the drone lands on the ground and must be picked up.

In our scenario, in contrast to the original one, the map is randomly generated
as a directed graph. This introduces randomization into the model generation
process, enabling us to thoroughly test our algorithms. It is guaranteed that
the graph is connected, and each node can be reached from the initial one.
Furthermore, each node has no more than four neighbors: one for each direction
of the world. Along with the map, pollution readings are also randomly generated
and assigned to each place. Readings can have one of the two values: pollution
or no pollution.
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Strategy Perfect Info Simpli�ed Strategy Approximation Domino DFS

#st G. time G. time #str #ep G. time #str #ep %ir Time Conclusive Time True

10 0.014 0.031 10 5 42.033 7 0 100% 0.018 50% 0.57 100%

100 0.176 0.546 92 61 60.210 83 0 100% 0.519 20% 90 TIMEOUT

1000 9.401 22.001 882 629 61.865 780 0 100% 3.136 0% 90 TIMEOUT

Fig. 1. Random Model results with logarithmic epistemic classes

Strategy Perfect Info Simpli�ed Strategy Approximation Domino DFS

#st G. time G. time #str #ep G. time #str #ep %ir Time Conclusive Time True

10 0.009 0.023 10 5 24.048 6 3 20% 0.017 80% 1.14 100%

100 0.202 0.489 94 58 54.253 66 36 10% 0.197 0% 90 TIMEOUT

1000 10.817 25.239 917 584 61.496 614 347 10% 2.647 0% 90 TIMEOUT

Fig. 2. Random Model results with linear epistemic classes

Each drone holds information about its current energy level, the set of already
visited places and its current position on the map. When in a coalition, the drones
share their data between themselves, as it is often done in real-life applications.
The indistinguishability relations are given by a faulty GPS mechanism: some of
the places on the map are indistinguishable for the drone. In that way, epistemic
classes are de�ned.

At each step, the drone can perform one of the listed actions:

� Fly in one of four directions: North, West, South or East;
� Wait, i.e., stay in the current place.

As mentioned before, each action costs the drone one unit of its energy level.
Due to the unpredictable nature of the wind, when performing the �y action the
drone can be carried away to a di�erent place from the one it intended.

5.3 Running the Experiments

In the experiments, we have tested 10 cases for each benchmark and each con�g-
uration, and collected the average results. Due to the randomized nature of the
models, it was possible that the model generation produces a structure where
no winning perfect information strategy existed. Such models were disregarded
in the output of the experiments. We note in passing that, for the Randomized
Model benchmark, winning perfect information strategies existed in approxi-
mately 70% of cases.

For each test case, �rst the perfect information strategy was randomly chosen,
and then its optimized version was generated according to Algorithm 3. We
compared our results with two other methods: �xpoint approximation from [33]
and DominoDFS from [35]. Both algorithms were implemented in Python as well
as the strategy optimization algorithm. The code is available online at https:
//github.com/blackbat13/stv.

Random Model was tested in two di�erent con�gurations that di�er only by
the function that binds the size of epistemic classes. In the �rst con�guration,
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Strategy Perfect Info Simpli�ed Strategy Approximation Domino DFS

Map #st G. time G. time #str #ep G. time #str #ep %ir Time Conclusive Time True

5 330 0.078 0.043 38 13 36.003 13 1 60% 0.036 0% 9.012 90%

10 10648 3.420 1.284 74 33 42.478 30 5 60% 1.895 0% 90 TIMEOUT

Fig. 3. Drone Model results

the maximum size of the epistemic classes was given by log2 n, where n is the
the number of states in the model. In the second con�guration, the size of the
epistemic classes was at most 10% n, i.e., linear wrt to the size of the state space.

For both benchmarks, only singleton coalitions were considered. In particular,
for Drone Model, we only generated models with a single drone acting against
the environment.5 The initial energy of the drone was de�ned as the number of
places in the map times two, in order to increase the likelihood of generating
a model in which the drone can visit all the places on the randomly generated
map.

The experiments were conducted on an Intel Core i7-6700 CPU with dynamic
clock speed of 2.60�3.50 GHz, 32 GB RAM, running under 64bit Linux Debian.

5.4 Results

The output of the experiments is presented in Figures 1, 2 and 3. Figures 1 and
2 present the results for the Random Model benchmark; Figure 3 presents the
results for the Drone Model benchmark. All running times are given in seconds.
The timeout was set to 90 seconds. In case of strategy optimization, this was
split into two parts: 30 seconds for the strategy generation, and 60 second for
its optimization.

The �rst columns present information about the model con�guration, its
size and generation time. The next seven columns describe the output of our
algorithms, i.e., the randomly generated strategy with perfect information and its
optimized version. The last part of the tables contains the reference results from
the algorithms used for comparison: lower and upper �xpoint approximation and
DominoDFS method.

The table headers should be interpreted as follows:

� Map: number of places on the map (for Drone Model);
� #st: number of states in the model;
� G.time: generation time for the model/strategy;
� #str: number of states reachable in the strategy;
� #ep: number of states in which the strategy uniformity was broken;
� %ir: percentage of cases in which optimized strategy was a uniform strategy;
� Time: time used by the Approximation/Domino DFS algorithm;
� Conclusive: percentage of cases in which the result of �xpoint approxima-
tion was conclusive, i.e. when both the upper bound and the lower bound
computations yield the same outcome;

5 Preliminary experiments for coalitions of drones are presented in Section 6.
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Algorithm 4 Optimization algorithm for coalition optimize_coal(PStr,A)

repeat
OldPStr := PStr
for agent in A do

Pstr := optimize_once(PStr)
end for

until timeout or (PStr = OldPStr)
return PStr

� True: percentage of cases in which Domino DFS returned a winning strategy
(timeout was reached in all the other cases).

As the results show, our method performed very well in comparison to the
reference algorithms. The DominoDFS method ended mostly with timeout for
larger models, and the �xpoint approximations gave mostly inconclusive results.
In contrast, our optimized strategies obtained pretty good elimination of con-
�icts, and in many cases produced ideal, i.e., fully uniform strategies.

The results also show clearly that our optimization algorithm works best
in situations when the size of the epistemic classes is relatively small. For the
logarithmic size of the epistemic classes, the optimized strategy was always a
uniform strategy (!). As for the setting with the linear size, the optimization-
based algorithm was not as good, but still gave a reduction of con�icts of about
40%. Even in that case, it produced ideal strategies in 10 − 20% of instances.
It is also worth pointing out that, for the Drone benchmark, our optimization
returned a uniform strategy in about 60% cases.

We note, again, that our algorithm is an anytime algorithm, which means
that it always returns some strategy, regardless of the given timeout.

6 Coalitional Strategies

So far, we have focused on the synthesis of individual strategies. In fact,
our synthesis algorithm in Section 4 works only for singleton coalitions. This
is because it relies on the fact that the domains of partial strategies are closed
with respect to indistinguishability relations of the involved agents. While such a
closure is guaranteed for information sets of single agent, the union of information
sets of several agents typically does not satisfy the property.

One way out is to de�ne the domains of partial strategies by the closure. The
domains would in that case correspond to common knowledge neighborhoods for
the coalition. Unfortunately, this will not work well in practice: for most models,
the common knowledge closure will produce the whole state space, and thus
make the computation infeasible.

Another simple idea is to optimize coalitional strategies agent-wise, alternat-
ing between the agents. In that case, we optimize the individual strategies being
parts of σA one by one, using the optimization template from Section 4. The
resulting procedure is presented as Algorithm 4.
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Strategy Perfect Info Simpli�ed Strategy

Map #st G. time G. time #st #ep G. time #st #ep %ir

3 667 0.85 0.397 35 11 12.031 9 1 60%

5 31122 69.265 107.428 587 728 60.8 87 58 40%

Fig. 4. Drone model results for coalitions

The output of our experimental evaluation for synthesis of coalitional strate-
gies is presented in Figure 4. For the experiments, the Drone benchmark was
selected with coalition of two drone agents. As the results show, our algorithm
obtained a high level of optimization of the initial, perfect information, strat-
egy. Most importantly, the procedure produced ideal strategies in 60% and 40%
of the instances, respectively, thus providing a conclusive answer to the model
checking question in about half of the cases.

7 Conclusions

In this paper, we propose an anytime algorithm to synthesize �reasonably good�
strategies for reachability goals under imperfect information. The idea is to �rst
generate a surely winning strategy with perfect information, and then iteratively
improve it with respect to its uniformity level and the tightness of its outcome set.
We evaluate the algorithm experimentally on two classes of models: randomly
generated ones and ones modeling a group of drones patrolling for air pollution.
The results show high optimization rates, especially for models with relatively
small indistinguishability classes. For such models, the procedure produced ideal
strategies in a large fraction of the instances, thus providing a conclusive answer
to the model checking question.

The fact that our method works well for models with small epistemic classes
suggests that it should complement, rather than compete, with methods based
on search through the space of uniform strategies (which usually work better
for models with large information sets). Depending on the kind of the model, a
suitable algorithm should be used.
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