NatSTV: Towards Verification of Natural Strategic Ability

Mateusz Kamiński, Damian Kurpiewski Wojtek Jamroga

Motivation

Analyzing voting protocols

• • • • • • • • • • •

Voting / e-voting protocol

Cryptography

Procedures

Attacker/intruder

Security

Human factor

Human factor

Makes a mistake

Ignores instructions

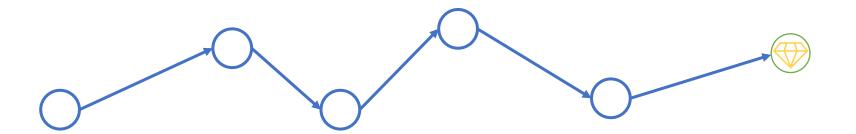
Skips the procedure, because it's too complex, time-consuming, hard to understand...

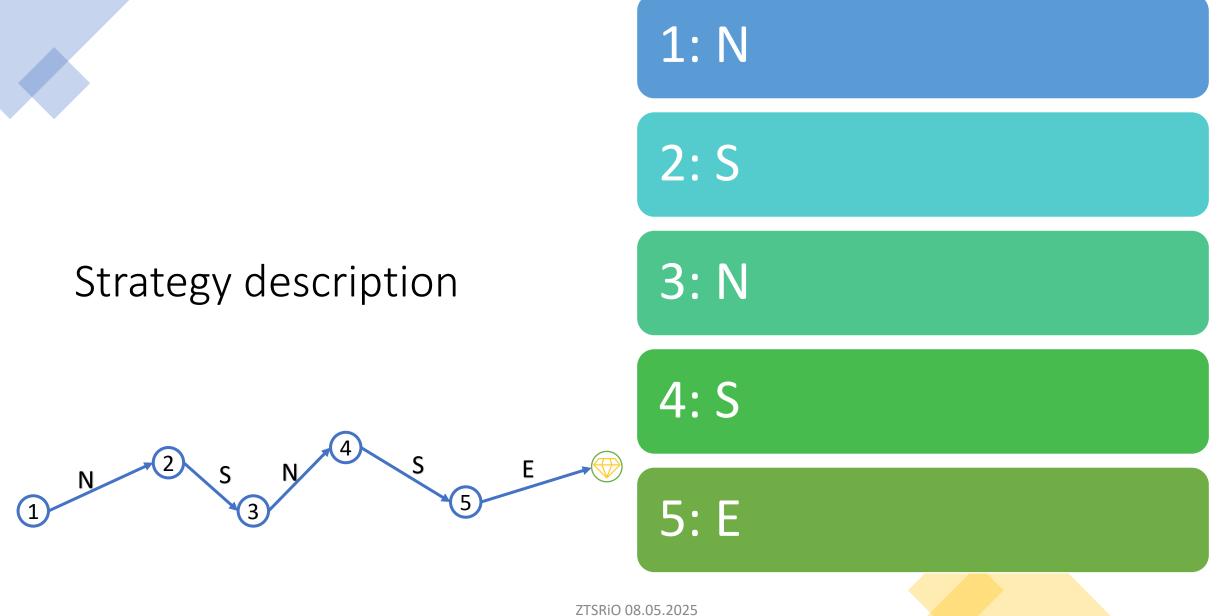
Can affect the security of the system

Analyzing the voting system

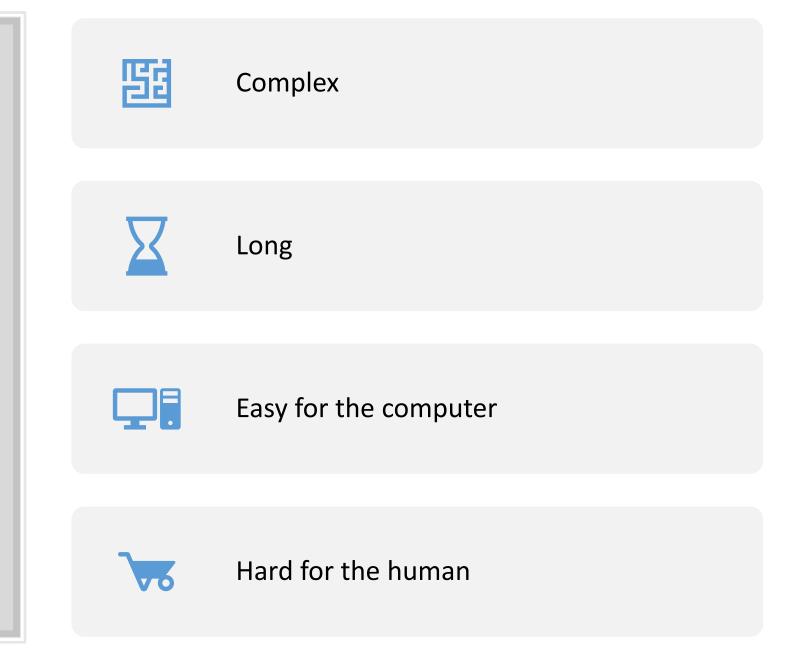
01

Create the (simplified) model of the system 02


Focus on the voter's behavior and her point of view 03


Describe requirements using ATL/NatATL formulae 04

Create natural strategies for the voter (and other agents)


Strategy

- A plan
- A path in the model

Classic strategy

Natural Strategy

Conditional plan

Decisions are based on some observations Based on the human behavior

Natural Strategy for the Voter

Out of the polling station -> go to the polling station

2. Empty ballot -> fill your ballot

3. Filled ballot -> cast your vote

Strategy in reality

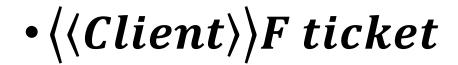
Understand the rules of the voting procedure

Check if your vote is correct

Verify that your vote has been counted correctly

Sign-in to the e-voting system

And much more ...


Background

Logics and strategies

ATL: What Agents Can Achieve

- ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]
- Temporal logic meets game theory
- Main idea: cooperation modalities
- $\langle \langle A \rangle \rangle \phi$: coalition A has a collective strategy to enforce ϕ
- ϕ can include temporal operators: X (next), F (sometime in the future), G (always in the future), U (strong until)

Example Formula

• Client can eventually buy a ticket

Strategy

A strategy of agent $a \in Agt$ is a conditional plan that specifies what a is going to do in every possible situation.

Formally, a perfect information memoryless strategy for a can be represented by a function $s_a: St \to Act$ satisfying $s_a(q) \in d_a(q)$ for each $q \in St$.

Strategy

A strategy of agent $a \in Agt$ is a conditional plan that specifies what a is going to do in every possible situation.

Formally, a perfect information memoryless strategy for a can be represented by a function $s_a: St \to Act$ satisfying $s_a(q) \in d_a(q)$ for each $q \in St$.

An *imperfect information memoryless strategy* additionally satisfies $s_a(q) = s_a(q')$ whenever $q \sim_a q'$

Natural ATL

- Strategies in a form of a set of simple conditions: guarded actions
- Strategy complexity represented as the total lengths of guards in the strategy
- $\langle \langle A \rangle \rangle^{\leq k} \phi$: coalition A has a collective strategy of size less or equal than k to enforce ϕ
- $\langle \langle Client \rangle \rangle^{\leq 10} F ticket$
- Client can buy a ticket by a strategy of complexity at most 10

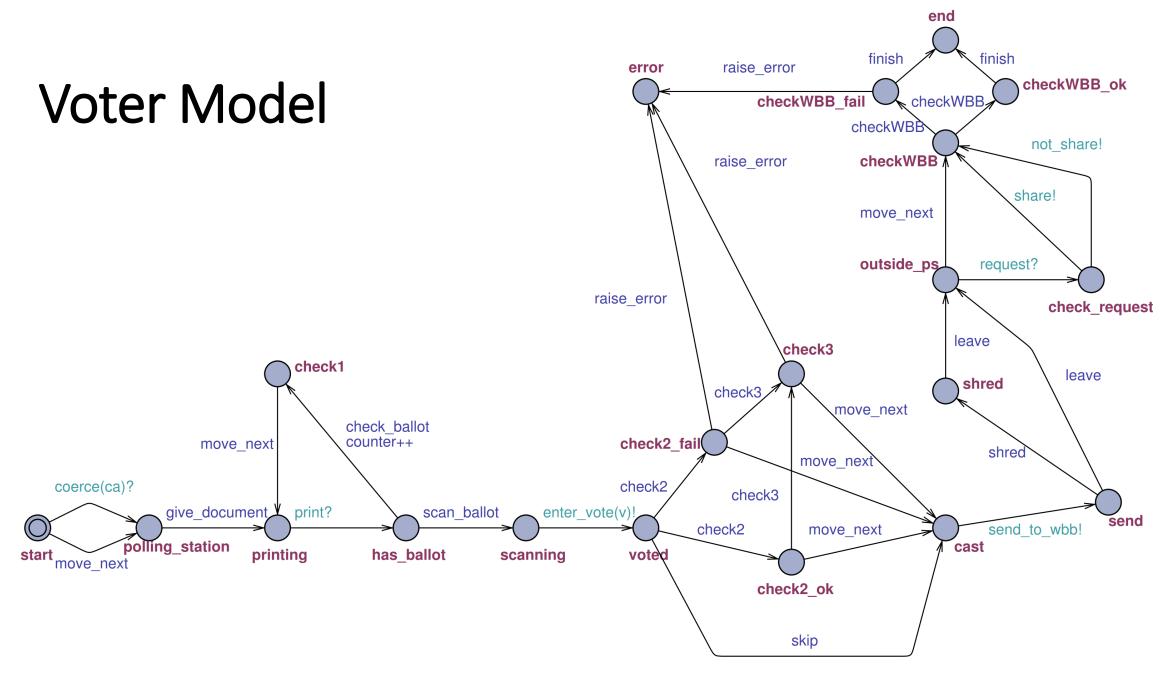
Example Strategy

1.
$$\neg$$
ticket $\land \neg$ selected $\land \neg$ paid $\land \neg$ error \rightarrow select

2. selected
$$\rightarrow pay$$

3. $T \rightarrow idle$

Example Strategy Complexity


1.
$$\neg$$
ticket $\land \neg$ selected $\land \neg$ paid $\land \neg$ error \rightarrow select
cost = 11
2. selected \rightarrow pay
cost = 1
3. $\top \rightarrow$ idle
cost = 1
Complexity: 11 + 1 + 1 = 13

Case Study

vVote voting system

Example case study: vVote

- Implementation of Prêt á Voter protocol
- Used for remote voting and voting of handicapped persons in the Australian state of Victoria elections in November 2014
- Main idea: encoding the vote using a randomized candidate list

$$\varphi_1 = \langle \langle voter \rangle \rangle^{\leq k} F(checkWBB_ok \lor checkWBB_fail)$$

- (1) start \lor check2_ok \lor check2_fail \lor outside_ps \rightsquigarrow *move_next*
- (2) polling_station \rightsquigarrow give_document
- (3) has_ballot \rightsquigarrow scan_ballot
- (4) scanning $\rightsquigarrow enter_vote(v)$
- (5) voted $\rightsquigarrow check2$
- (6) cast \rightsquigarrow send_to_wbb
- (7) send \rightsquigarrow *shred*
- (8) shred \rightsquigarrow *leave*
- (9) check_request $\rightsquigarrow not_share$
- (10) checkWBB $\rightsquigarrow checkWBB$
- (11) $\top \rightsquigarrow \bigstar$

Complexity

- 11 guarded commands
- (1) start V check2_ok V check2_fail V outside_ps: cost 7
- Other guarded commands cost 1
- Total complexity: 1 * 10 + 7 * 1 = 17
- The formula φ_1 is true with any k of 17 and more

Example construction of the strategy for $arphi_1$

- (1) has_ballot \rightsquigarrow scan_ballot
- (2) \neg has_ballot \land scanning \rightsquigarrow *enter_vote*
- (3) \neg has_ballot $\land \neg$ scanning \land voted \rightsquigarrow *check*2
- (4) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted \land (check2_ok \lor check2_fail) \rightsquigarrow *move_next*
- (5) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) \land cast \rightsquigarrow send_to_wbb
- (6) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast \land send \rightsquigarrow shred
- (7) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast $\land \neg$ send \land shred \rightsquigarrow *leave*
- (8) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast $\land \neg$ send $\land \neg$ shred \land check_request $\rightsquigarrow not_share$
- (9) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast $\land \neg$ send $\land \neg$ shred $\land \neg$ check_request \land checkWBB \rightsquigarrow checkWBB
- (10) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast $\land \neg$ send $\land \neg$ shred $\land \neg$ check_request $\land \neg$ checkWBB $\rightsquigarrow \star$

Challenges

Problems to solve

Finding (one of possibly many) natural strategy for the given formulae (if the strategy exists)

Minimizing the representation/complexity of the found strategy

Problems to solve

Finding (one of possibly many) natural strategy for the given formulae (if the strategy exists)

Minimazing the representation/complexity of the found strategy

q1	q2	q3	q4	act
1	0	0	0	А
0	1	1	0	В
0	1	0	0	С

q1	q2	q3	q4	act
1	0	0	0	А
0	1	1	0	В
0	1	0	0	С

After reduction:

q1	q3	act
1		А
	1	В
		С

q1	q2	q3	q4	act
1	0	0	0	А
0	1	1	0	В
0	1	0	0	С

After reduction:

q1	q3	act
1		А
	1	В
		С

Natural strategy:

- $\begin{array}{ccc} 1. & q1 \rightarrow A \\ 2 & 2 & P \end{array}$
- $\begin{array}{ll} 2. & q3 \rightarrow B \\ 3. & T \rightarrow C \end{array}$

q1	q2	q3	q4	act
1	0	0	0	А
0	1	0	1	А
1	1	0	0	В
0	1	1	0	В

q1	q2	q3	q4	act
1	0	0	0	А
0	1	0	1	А
1	1	0	0	В
0	1	1	0	В

After reduction:

q1	q2	q4	act
1	1		В
1			А
		1	А
			В

q1	q2	qЗ	q4	act
1	0	0	0	А
0	1	0	1	А
1	1	0	0	В
0	1	1	0	В

After reduction:

q1	q2	q4	act
1	1		В
1			А
		1	А
			В

Natural strategy:

1.
$$q1 \wedge q2 \rightarrow B$$

$$2. \qquad q1 \lor q4 \to A$$

$$3. \quad T \rightarrow B$$

Experimental evaluation

Simple Voting with 2 candidates

$$\begin{split} \phi_1 &\equiv \langle\!\langle c \rangle\!\rangle \Box((finish_k \wedge vote_{i,j}) \to pun_i) \\ \phi_2 &\equiv \langle\!\langle v_i \rangle\!\rangle \Box(\neg K_c vote_{i,j}) \\ \phi_3 &\equiv \langle\!\langle v_i \rangle\!\rangle \Box(finish_i \to vote_{i,j} \wedge \neg K_c vote_{i,j}) \end{split}$$

#V	Model	ϕ_1					ϕ_2			ϕ_3			
π •	genera-	General	Natural	Compl.	Compl.	General	Natural	Compl.	Compl.	General	Natural	Compl.	Compl.
	tion	synthesis	synthesis	raw	optimized	synthesis	synthesis	raw	optimized	synthesis	synthesis	raw	optimized
1	0.03	< 0.01	< 0.01	156	26	< 0.01	< 0.01	9	3	< 0.01	< 0.01	9	3
2	0.05	< 0.01	< 0.01	991	131	< 0.01	< 0.01	9	3	< 0.01	< 0.01	9	3
3	0.21	0.15	0.15	4516	512	0.01	0.04	9	3	0.02	0.03	9	3
4	5.89	5.25	5.48	18043	1831	0.02	0.02	9	3	0.04	0.05	9	3
5	254.98	memout			25.02	10.15	9	3	28.56	12.68	9	3	
6	timeout	-	-	-	-	-	-	-	-	-	-	-	-

Natural strategy for ϕ_3 found by STV

1.
$$\neg vote_{1,2} \rightarrow vote_2$$

cost = 2

2. $T \rightarrow idle$

cost = 1Complexity: 2 + 1 = 3

vVote with 2 candidates

 $\phi_4 \equiv \langle\!\langle v_1 \rangle\!\rangle \Diamond (checkWBB_ok \lor checkWBB_notok)$ $\phi_5 \equiv \langle\!\langle v_1, c \rangle\!\rangle \Diamond (vote_{1,1} \land K_cvote_{1,1}).$

#V	gen		ϕ	4			ϕ	5	
	gen.	Strat.	Strat. nat.	Cmp. std.	Cmp. red.	Strat.	Strat. nat.	Cmp. std.	Cmp. red.
1	0.04	< 0.01	0.06	797	39	<0.01	0.02	863	42
2	0.24	<0.01	0.26	2170	124	<0.01	0.04	851	38
3	9.02	0.43	0.54	2105	122	0.22	0.41	851	38
4	526.16	29.55	21.83	2170	124	18.64	18.81	851	38
5	timeout	-	-	-	-	-	-	-	-

Conclusions

- It's not enough that a voter has a strategy **complexity** is important
- Natural Strategy complexity helps to estimate the mental difficulty
- Other important factors exists: time, money, etc.
- The presented methodology can be applied outside the e-voting domain
- STV can be used to find natural strategy, if one exists

