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Abstract. Model checking of strategic abilities is a notoriously hard problem,
even more so in the realistic case of agents with imperfect information. Assume-
guarantee reasoning can be of great help here, providing a way to decompose the
complex problem into a small set of exponentially easier subproblems. In this
paper, we propose two schemes for assume-guarantee verification of alternating-
time temporal logic with imperfect information. We prove the soundness of both
schemes, and discuss their completeness. We illustrate the method by examples
based on known benchmarks, and show experimental results that demonstrate the
practical benefits of the approach.
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1 Introduction

Multi-agent systems involve a complex network of social and technological compo-
nents. Such components often exhibit self-interested, goal-directed behavior, which
makes it harder to predict and analyze the dynamics of the system. In consequence,
formal specification and automated verification can be of significant help.
Verification of strategic ability. Many important properties of multi-agent systems
refer to strategic abilities of agents and their groups. Alternating-time temporal logic
ATL∗ [2,37] and Strategy Logic SL [34] provide powerful tools to reason about such
aspects of MAS. For example, the ATL∗ formula 〈〈taxi〉〉G¬fatality expresses that
the autonomous cab can drive in such a way that no one gets ever killed. Similarly,
〈〈taxi, passg〉〉F destination says that the cab and the passenger have a joint strategy
to arrive at the destination, no matter what the other agents do. Specifications in agent
logics can be used as input to algorithms and tools for model checking, that have been
in constant development for over 20 years [3,6,7,20,27,30].

Model checking of strategic abilities is hard, both theoretically and in practice.
First, it suffers from the well-known state/transition-space explosion. Moreover, the
space of possible strategies is at least exponential on top of the state-space explosion,
and incremental synthesis of strategies is not possible in general – especially in the
realistic case of agents with partial observability. Even for the more restricted (and
computation-friendly) logic ATL, model checking of its imperfect information vari-
ants is ∆P

2 - to PSPACE-complete for agents playing memoryless strategies [5,37]



2 Łukasz Mikulski, Wojciech Jamroga, and Damian Kurpiewski

and EXPTIME-complete to undecidable for agents with perfect recall [12,16]. The
theoretical results concur with outcomes of empirical studies on benchmarks [6,22,30],
as well as recent attempts at verification of real-life multi-agent scenarios [21,26].

Contribution. In this paper, we make the first step towards compositional model check-
ing of strategic properties in asynchronous multi-agent systems with imperfect informa-
tion. The idea of assume-guarantee reasoning [10,36] is to “factorize” the verification
task into subtasks where components are verified against a suitable abstraction of the
rest of the system. Thus, instead of searching through the states (and, in our case, strate-
gies) of the huge product of all components, most of the search is performed locally.

To achieve this, we adapt and extend the assume-guarantee framework of [31,32].
We redefine the concepts of modules and their composition, follow the idea of ex-
pressing assumptions as Büchi automata, and accordingly redefine their interaction with
the computations of the coalition. Then, we propose two alternative assume-guarantee
schemes for ATL∗ with imperfect information. The first, simpler one is shown to be
sound but incomplete. The more complex one turns out to be both sound and complete.
We illustrate the properties of the schemes on a variant of the Trains, Gate and Con-
troller scenario [4], and evaluate the practical gains through verification experiments on
models of logistic robots, inspired by [26].

Note that our formal treatment of temporal properties, together with strategic prop-
erties of curtailment,4 substantially extends the applicability of schemes in [31,32] from
temporal liveness properties to strategic properties with arbitrary LTL objectives. We
also emphasize that our schemes are sound for the model checking of agents with imper-
fect as well as perfect recall. In consequence, they can be used to facilitate verification
problems with a high degree of hardness, including the undecidable variant for coali-
tions of agents with memory. In that case, the undecidable problem reduces to multiple
instances of the EXPTIME-complete verification of individual abilities.

Structure of the paper. In Section 2, we present the model of concurrent MAS that
we consider in this paper. In Section 3, we define the syntax and semantics of the logic
used in the formulation of agents’ strategic properties. In Sections 4 and 5 we intro-
duce the notions of assumption and guarantee, and utilize them to propose two schemes
of assume-guarantee reasoning for strategic abilities. Finally, we present preliminary
results of experimental verification in Section 6 and conclude the paper in Section 7.

Related Work. Compositional verification (known as rely-guarantee in the program
verification community) dates back to the early 1970s and the works of Hoare, Ow-
icki, Gries and Jones [19,24,35]. Assume-guarantee reasoning for temporal specifica-
tions was introduced a decade later [10,36], and has been in development since that
time [11,13,18,29,31,32]. Moreover, automated synthesis of assumptions for temporal
reasoning has been studied in [9,15,17,25].

The works that come closest to our proposal are [11,14,31,32]. In [31,32], models
and a reasoning scheme are defined for assume-guarantee verification of liveness prop-
erties in distributed systems. We build directly on that approach and extend it to the
verification of strategic abilities. [11] studies assume-guarantee reasoning for an early
version of ATL. However, their assume-guarantee rules are designed for perfect infor-

4 Provided in the supplementary material, available at https://github.com/agrprima22/sup.

https://github.com/agrprima22/sup
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mation strategies (whereas we tackle the more complex case of imperfect information),
and targeted specifically the verification of aspect-oriented programs. Finally, [14] in-
vestigates the compositional synthesis of strategies for LTL objectives. The difference
to our work is that they focus on finite-memory strategies while we consider the seman-
tics of ability based on memoryless and perfect recall strategies. Another difference lies
in our use of repertoire functions that define agents’ choices in a flexible way, and make
it closer to real applications. The advantage of the solution presented in [14] is the use
of contracts, thanks to which it is possible to synthesize individual strategies using the
knowledge of the coalition partners’ strategies. We also mention [8] that studies the
synthesis of Nash equilibrium strategies for 2-player coalitions pursuing ω-regular ob-
jectives. The authors call their approach assume-guarantee strategy synthesis, but the
connection to assume-guarantee verification is rather loose.

A preliminary version of the ideas, presented here, was published in the extended
abstract [33]. Our extension of the STV tool [27], used in the experiments, is described
in the companion paper [28].

2 Models of Concurrent MAS

Asynchronous MAS have been modeled by variants of reactive modules [1,32] and
automata networks [23]. Here, we adapt the variant of reactive modules that was used
to define assume-guarantee verification for temporal properties in [32].

2.1 Modules

LetD be the shared domain of values for all the variables in the system.DX is the set of
all valuations for a set of variables X . The system consists of a number of agents, each
represented by its module and a repertoire of available choices. Every agent uses state
variables and input variables. It can read and modify its state variables at any moment,
and their valuation is determined by the current state of the agent. The input variables
are not a part of the state, but their values influence transitions that can be executed.

Definition 1 (Module [32]). A module is a tuple M = (X, I,Q, T, λ, q0), where: X
is a finite set of state variables; I is a finite set of input variables with X ∩ I = ∅;
Q = {q0, q1, . . . , qn} is a finite set of states; q0 ∈ Q is an initial state; λ : Q → DX

labels each state with a valuation of the state variables; finally, T ⊆ Q×DI ×Q is a
transition relation such that (a) for each pair (q, α) ∈ Q×DI there exists q′ ∈ Q with
(q, α, q′) ∈ T , and (b) (q, α, q′) ∈ T, q 6= q′ implies (q, α, q) /∈ T . In what follows, we
omit the self-loops from the presentation.

Modules M,M ′ are asynchronous if X ∩X ′ = ∅. We extend modules by adding
repertoire functions that define the agents’ available choices in a way similar to [23].

Definition 2 (Repertoire). Let M = (X, I,Q, T, λ, q0) be a module of agent i. The
repertoire of i is defined as R : Q → P(P(T )), i.e., a mapping from local states to
sets of sets of transitions. Each R(q) = {T1, . . . , Tm} must be nonempty and consist of
nonempty sets Ti of transitions starting in q. If the agent chooses Ti ∈ R(q), then only
a transition in Ti can be occur at q within the module.
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Fig. 1. A variant of TCG: Train synchronizing with a semaphore (left) and the controller (right).

We adapt the Train-Gate-Controller (TGC) benchmark [3] as our running example.

Example 1. The module M (i) of a train is presented in Figure 1 (left). Its local states
Q(i) = {w(i), t(i), a(i)} refer, respectively, to the train waiting at the entrance, riding
in the tunnel, and cruising away from the tunnel. The sole state variable x(i) labels the
state with values 0, 1, and 2, respectively. I(i) = {s} consists of a single input variable
that takes values from an external multi-valued semaphore. The train can enter and exit
the tunnel only if the semaphore allows for that, i.e., if v(s) = i. To this end, we define
T (i) = {(w(i), i, t(i)), (t(i), i, a(i)), (a(i), 0, w(i)), (a(i), 1, w(i)) . . . , (a(i), n, w(i))} ∪
{(w(i), j, w(i)), (t(i), j, t(i)) | j 6= i} .5

The module M (C(n)) of a controller that coordinates up to n trains is depicted in
Figure 1 (right). Formally, it is defined by:

– X = {s} (the semaphore),
– I = {x1, . . . , xn} (the positions of trains),
– Q = {r, g1, . . . , gn} (red or directed green light),

where a state with subscript 1 represents a tunnel shared with the other trains, λ(gi)(s) =
i, λ(r)(s) = 0, and r is the initial state.

The controller can change the light to green when a train is waiting for the per-
mission to enter the tunnel, and back to red after it passed through the tunnel: T =
{(r, v, gi) | v(xi) = 0} ∪ {(gi, v, r) | v(xi) = 2}.

Each agent can freely choose the local transition intended to execute next. Thus,
R(i)(q) = {{(q, α, q′)} | (q, α, q′) ∈ T (i)}, and similarly for R(C(n)).

Note that all the modules in TCG are asynchronous.

2.2 Composition of Agents

On the level of the temporal structure, the model of a multi-agent system is given by the
asynchronous composition M = M (1)| . . . |M (n) that combines modules M (i) into a
single module. The definition is almost the same as in [32]; we only extend it to handle
the repertoire functions that are needed to characterize strategies and strategic abilities.

5 By a slight abuse of notation, the valuation of a single variable is identified with its value.
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We begin with the notion of compatible valuations to adjust local states of one agent
with the labels of the actions performed by the other agent. Note that the local states of
different asynchronous agents rely on disjoint sets of variables.

Let Y,Z ⊆ X and ρ1 ∈ DY while ρ2 ∈ DZ . We say that ρ1 is compatible with ρ2
(denoted by ρ1 ∼ ρ2) if for any x ∈ Y ∩ Z we have ρ1(x) = ρ2(x). We can compute
the union of ρ1 with ρ2 which is compatible with ρ1 by setting (ρ1 ∪ ρ2)(x) = ρ1(x)
for x ∈ Y and (ρ1 ∪ ρ2)(x) = ρ2(x) for x ∈ Z.

Definition 3 (Composition of modules [32]). The composition of asynchronous mod-
ulesM (1) = (X(1), I(1), Q(1), T (1), λ(1), q

(1)
0 ) andM (2) = (X(2), I(2), Q(2), T (2), λ(2), q

(2)
0 )

(with X(1) ∩ X(2) = ∅) is a composite module M = (X = X(1) ] X(2), I =

(I(1) ∪ I(2)) \X,Q(1) ×Q(2), T, λ, q0 = (q
(1)
0 , q

(2)
0 )), where

– λ : Q(1) ×Q(2) → DX , λ(q(1), q(2)) = λ(1)(q(1)) ∪ λ(2)(q(2)),
– T is the minimal transition relation derived by the set of rules presented below:

ASYNL

q(1)
α(1)

−−→T (1) q′
(1)

q(2)
α(2)

−−→T (2) q′
(2)

α(1) ∼ α(2) λ(1)(q(1)) ∼ α(2) λ(2)(q(2)) ∼ α(1)

(q(1), q(2))
(α(1)∪α(2))\X−−−−−−−−−→T (q′

(1)
, q(2))

ASYNR

q(1)
α(1)

−−→T (1) q′
(1)

q(2)
α(2)

−−→T (2) q′
(2)

α(1) ∼ α(2) λ(1)(q(1)) ∼ α(2) λ(2)(q(2)) ∼ α(1)

(q(1), q(2))
(α(1)∪α(2))\X−−−−−−−−−→T (q(1), q′

(2)
)

SYN

q(1)
α(1)

−−→T (1) q′
(1)

q(2)
α(2)

−−→T (2) q′
(2)

α(1) ∼ α(2) λ(1)(q(1)) ∼ α(2) λ(2)(q(2)) ∼ α(1)

(q(1), q(2))
(α(1)∪α(2))\X−−−−−−−−−→T (q′

(1)
, q′

(2)
)

pruned in order to avoid disallowed self-loops. We use the notation M =M (1)|M (2).

Note that the operation is defined in [32] for a pair of modules only. It can be easily
extended to a larger number of pairwise asynchronous modules. Moreover, the order of
the composition does not matter.

Consider agents (M (1), R(1)), . . . , (M (n), R(n)). The multi-agent system is de-
fined by S = (M (1)|M (2)| . . . |M (n), R(1), . . . , R(n)), i.e., the composition of the
underlying modules, together with the agents’ repertoires of choices.

Example 2. The composition M (1)|M (2)|M (C(2)) of two train modules M (1),M (2)

and controller M (C(2)) is presented in Figure 2. The asynchronous transitions are la-
belled by the agent performing the transitions. All the synchronous transitions per-
formed by both trains are in red, while the synchronous transitions performed by a
controller with one of the trains are in blue. There are two synchronous transition per-
formed by all the agents, both in green.



6 Łukasz Mikulski, Wojciech Jamroga, and Damian Kurpiewski

[0, 0, 0]start

[0, 0, 1]

[1, 0, 1]

[2, 0, 1]

[2, 0, 0]

[0, 0, 2] [0, 1, 2] [0, 2, 2] [0, 2, 0]

[0, 2, 1]

[1, 2, 1]

[2, 2, 1]

[2, 2, 0][2, 0, 2] [2, 1, 2] [2, 2, 2]

S

1

1

S

1 1

S 2 2 S

2

2

S

1

1

S

11

S 2 2 S

2

2

1 1 1

2

2

2

Fig. 2. Composition of modules: two trains M (1),M (2) and controller M (C(2))

Traces and Words. A trace of a module M is an infinite sequence of alternating states
and transitions σ = q0α0q1α1 . . ., where (qi, αi, qi+1) ∈ T for every i ∈ N (note that
q0 is the initial state). An infinite word w = v0v1, . . . ∈ (DX)ω is derived by M with
trace σ = q0α0q1α1 . . . if vi = λ(qi) for all i ∈ N. An infinite word u = α0α1, . . . ∈
(DI)ω is admitted by M with σ if σ = q0α0q1α1 . . .. Finally, w (resp. u) is derived
(resp. admitted) by M if there exists a trace of M that derives (resp. admits) it.

3 What Agents Can Achieve

Alternating-time temporal logic ATL∗ [2,37] introduces strategic modalities 〈〈C〉〉γ,
expressing that coalition C can enforce the temporal property γ. We use the semantics
based on imperfect information strategies with imperfect recall (ir) or perfect recall
(iR) [37]. Moreover, we only consider formulas without the next step operator X due
to its questionable interpretation for asynchronous systems, which are based on the
notion of local clocks.

Syntax. Formally, the syntax of ATL∗−X is as follows:

φ ::= p(Y ) | ¬φ | φ ∧ φ | 〈〈C〉〉γ , γ ::= φ | ¬γ | γ ∧ γ | γU γ

where p : Y → D for some subset of domain variables Y ⊆ X . That is, each atomic
statement refers to the valuation of variables used in the system. U is the “strong until”
operator of LTL−X. The “sometime” and “always” operators can be defined as usual
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by F γ ≡ >U γ and G γ ≡ ¬F¬γ. The set of variables used by the formula γ is
denoted by var(γ).

In most of the paper, we focus on formulas that consist of a single strategic modality
followed by an LTL−X formula (i.e., 〈〈C〉〉γ, where γ ∈ LTL−X). The corresponding
fragment of ATL∗−X, called 1ATL∗−X, suffices to express many interesting specifica-
tions, namely the ones that refer to agents’ ability of enforcing trace properties (such
as safety or reachability of a winning state). Note that 1ATL∗−X has strictly higher ex-
pressive and distinguishing power than LTL−X. In fact, model checking 1ATL∗−X is
equivalent to LTL−X controller synthesis, i.e., a variant of LTL realizability.

Nested strategic modalities might be sometimes needed to refer to an agent’s ability
to endow or deprive another agent with/of ability. We discuss assume-guarantee verifi-
cation for such specifications in Section 5.4.

Strategies and Their Outcomes. Let S be a system composed of n agents with asyn-
chronous modules M (i) = (X(i), I(i), Q(i), T (i), λ(i), q

(i)
0 ) and repertoires R(i).

Definition 4 (Strategies). A memoryless strategy for agent i (ir-strategy in short) is a
function siri : Q(i) → P(P(T (i))) such that siri (q

(i)) ∈ R(i)(q(i)) for every q(i) ∈ Q(i).
That is, a memoryless strategy assigns a legitimate choice to each local state of i.

A perfect recall strategy for i (iR-strategy in short) is a function siRi : (Q(i))+ →
T (i) such that siRi (q

(i)
1 , . . . , q

(i)
k ) ∈ R(i)(q

(i)
k ), i.e., it assigns choices to finite sequences

of local states. We assume that siRi is stuttering-invariant, i.e.,

siRi (q
(i)
1 , . . . , q

(i)
j , q

(i)
j , . . . , q

(i)
k ) = siRi (q

(i)
1 , . . . , q

(i)
j , . . . , q

(i)
k ).

Note that the agent’s choices in a strategy depend only on its local states, thus being
uniform by construction.

Let σ = q0α0q1α1 . . . be a trace, where qj = (q
(1)
j , q

(2)
j , . . . , q

(n)
j ) are global states

in Q(1) × . . . ×Q(n). We say that σ implements strategy siri if, for any j where q(i)j 6=
q
(i)
j+1, we have (q

(i)
j , αj , q

(i)
j+1) ∈ siri (q

(i)
j ) where αj : I(i) → D and αj(x) = λ(qj)(x).

A word w = v0v1 . . . implements siri if it is derived by S with some trace σ implement-
ing siri . The definitions for siRi are analogous.

Definition 5 (Coalitional strategies). Let C ⊆ {1, . . . , n} be a coalition of agents. A
joint memoryless strategy sirC for C is a collection of memoryless strategies siri , one per
i ∈ C. We say that a trace σ (respectively a word wσ) implements sirC if it implements
every strategy siri , i ∈ C. The definitions for joint perfect recall strategies are analo-
gous. Whenever a claim holds for both types of strategies, we will refer to them simply
as “strategies.”

Semantics. Let x ∈ {ir, iR} be a strategy type. The semantics of ATL∗−X is given
below (we omit the standard clauses for Boolean operators etc.). By w[i], we denote the
ith item of sequence w, starting from 0.

S, q |=x p(Y ) if λ(q)|Y = p(Y );
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S, q |=x 〈〈C〉〉γ if there exists an x-strategy sC for C such that, for any word w starting
in q that implements sC , we have S, w |= γ;

S, w |= φ if S, w[0] |= φ;
S, w |= γ1 U γ2 if there exists j such that S, w[j,∞] |= γ2, and S, w[i,∞] |= γ1 for

each 0 ≤ i < j.

Finally, we say that S |=x φ if S, q0 |=x φ, where q0 is the initial state of S.

Example 3. Let us consider the system S of Example 2 and the 1ATL∗ formula φ ≡
〈〈1, 2〉〉(GFp(1) ∧GFp(2)), where p(i)(x(i)) = 1. That is, φ says that trains 1, 2 have a
strategy so that each visits the tunnel infinitely many times. Consider the joint strategy
(σ1, σ2) with σi(w(i)) = {(w(i), i, T (i))}, σi(T (i)) = {(T (i), i, A(i))}, and σi(A(i)) =
{(A(i), 3 − i, w(i))}. All the traces implementing (σ1, σ2) alternate the visits of the
trains in the tunnel, making the LTL formulaGFp(1)∧GFp(2) satisfied. Thus, S |=x φ
for x ∈ {ir, iR}.

By the same strategy, we get S |=x 〈〈1, 2〉〉(GFq(1) ∧GFq(2)), where q(i)(s) = i.

4 Assumptions and Guarantees

Our assume-guarantee scheme reduces the complexity of model checking by “factoriz-
ing” the task into verification of strategies of single agents with respect to abstractions
of the rest of the system. In this section, we formalize the notions of assumption and
guarantee, which provide the abstractions in a way that allows for simulating the global
behavior of the system.

4.1 Assumptions

Definition 6 (Assumption [32]). An assumption or an extended module (M,F ) =
(X, I,Q, T, λ, q0, F ) is a module augmented with a set of accepting states F ⊆ Q.

For assumptions, we use Büchi accepting conditions. More precisely, the infinite word
w = q0q1, . . . is accepted by extended module (M,F ) with computation u = α0α1 . . .
if it is derived by M with a trace σ = q0α0q1α1 . . . and inf (σ)∩F 6= ∅. Thus, the as-
sumptions have the expressive power of ω-regular languages. In practical applications,
it might be convenient to formulate actual assumptions in LTL (which covers a proper
subclass of ω-regular properties).

The definitions of Sections 2 and 3 generalize to assumptions in a straightforward
way. In particular, we can compose a module M with an assumption A′ = (M ′, F ′),
and obtain an extended composite moduleA = (M |M ′, F ), where F = {(q, q′) ∈ Q×
Q′ | q′ ∈ F ′}. We use the notationA =M |A′. Moreover, letA = (A,R(1), . . . , R(m))
be a MAS based on the extended module A with repertoires related to all components
of M . The semantics of 1ATL∗−X extends naturally:

A, q |=x 〈〈C〉〉φ iff there exists an x-strategy sC for C such that, for any word w =
w[1]w[2] . . . that implements sC and is accepted by A, we have A, w |=x φ.



Assume-Guarantee Verification of Strategic Ability 9

s = 0s = 1 s = 2

A0 :

v(x(1)) = 0

v(x(2)) = 0v(x(1)) = 2

v(x(2)) = 2

s = 0s = 1 s = 2

A1 :

v(x(1)) = 0

v(x(2)) = 0v(x(1)) = 2

v(x(2)) = 2

s = 0s = 1 s = 2

A2 :

v(x(1)) = 0

v(x(2)) = 0v(x(1)) = 2

v(x(2)) = 2

s = 0s = 1 s = 2

A012 :

v(x(1)) = 0

v(x(2)) = 0v(x(1)) = 2

v(x(2)) = 2

Fig. 3. Assumptions for the railway scenario

Example 4. Recall module M (C(2)) = (X, I,Q, T, λ, q0) of the controller for 2 trains,
with Q = {r, g(1), g(2)}. We define four different assumptions about the behavior of
the rest of the system, depicted graphically in Figure 3:

– A0 = (X, I,Q, T, λ, q0, {r})
– A1 = (X, I,Q, T, λ, q0, {g(1)})
– A2 = (X, I,Q, T, λ, q0, {g(2)})
– A012 = (X, I,Q, T, λ, q0, {r, g(1), g(2)}).

Note that we can identify each valuation with an element of the set {0, 1, 2}, i.e.,
the value of the only variable s. This way A0 as well as A012 accept all infinite words
of the ω-regular language L = (0(1|2))ω , while A1 and A2 accept only proper subsets
of this language, namely L \ (0(1|2))∗(02)ω and L \ (0(1|2))∗(01)ω .

4.2 Guarantees

We say that a sequence v = v1v2 . . . over DY is a curtailment of a sequence u =
u1u2 . . . over DX (where Y ⊆ X) if there exists an infinite sequence c of indices
c0 < c1 < ... with c0 = 0 such that ∀i∀ci≤k<ci+1vi = uk|Y . We will denote a
curtailment of u to DY by u|Y or u|cY , and use it to abstract away from irrelevant
variables and the stuttering of states.

Definition 7 (Guarantee). Let M (1), . . . ,M (k) be pairwise asynchronous modules,
and A = (X(A), I(A), Q(A), T (A), λ(A), q

(A)
0 , F (A)) be an assumption with X(A) ⊆

X =
⋃k
i=1X

(i) and I(A) ⊆ I =
⋃k
i=1 I

(i).
We say that M = M (1)| . . . |M (k) guarantees the assumption A (denoted M |= A)

if, for every infinite trace σ ofM withw ∈ (DX)ω derived byM with σ and u ∈ (DI)ω

admitted by M with σ, there exists a curtailment w|c
X(A) (c = c1, c2, . . .) accepted by

A with the computation uc1−1|I(A) uc2−1|I(A) . . . .

That is, every trace of M must agree on the values of X(A) with some trace in A,
modulo stuttering.

Example 5. Consider the system M (C(2))|M (1)|M (2) presented in Example 2, its sub-
system M (C(2))|M (2) from Figure 4, and the assumption A012 of Example 4.
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(0, 0)(1, 0) (2, 0)

(2, 1)

(2, 2)(0, 2)(1, 2)

v(x(1)) = 0

v(x(1)) = 2

v(x(1)) = 0

v(x(1)) = 2

v
(x (1

)
)
=

0

(0, 0)(1, 0) (2, 0)

(2, 1)

(2, 2)(0, 2)(1, 2)

v(x(1)) = 0

v(x(1)) = 2

v(x(1)) = 0

v(x(1)) = 2

Fig. 4. Module M (C(2))|M (2) (left). The edges are labeled only if the value of x(1) is relevant.
Subsystem M (2)|A012 implementing strategy σ (right).

If we focus on the changes s, the following words can be derived: (0(1|2))ω for
the trains taking turns in the tunnel forever, (0(1|2))∗01ω for the traces where the
semaphore is stuck in state (1, 0) because it never receives that v(x(1)) = 2, and
(0(1|2))∗02ω for ones that cycle forever in the right-hand part of M (C(2))|M (2). In
consequence, we have that M (C(2))|M (2) |= A012, but not M (C(2))|M (2) |= A1.

It is possible to relate the traces of a subsystem with the traces of the entire system
in such a way that it is possible to verify locally defined formulas.

5 Assume-Guarantee Reasoning for 1ATL*

Now we propose our assume-guarantee schemes that decompose abilities of coalition
C into abilities of its subcoalitions, verified in suitable abstractions of their neighbor
modules.

5.1 Assume-Guarantee Rule for Strategies

Let S be a system composed of asynchronous agents (M (1), R(1)), . . . , (M (n), R(n)).
By N (i)

1 , we denote the direct “neighborhood” of agent i, i.e., the set of agent indices j
such that IM(j) ∩ XM(i) 6= ∅ or IM(i) ∩ XM(j) 6= ∅. By N (i)

k , we denote the agents
connected to i in at most k steps, i.e., (N (i)

k−1 ∪
⋃
j∈N(i)

k−1

N
(j)
1 ) \ {i}. Finally Comp

(i)
k

denotes the composition of all modules of N (i)
k . That is, if N (i)

k = {a1, ..., am} then
Comp

(i)
k =M (a1)|...|M (am).

Let ψi be an LTL formula (without “next”), where atomic propositions are lo-
cal valuations of variables in M (i). Also, let x ∈ {ir, iR}. The scheme is formalized
through a sequence of rules Rk which rely on the behaviour of the neighbourhoods of
coalition C, limited by “distance” k:

Rk

∀i∈C (M (i)|Ai, R(i)) |=x 〈〈i〉〉ψi
∀i∈C Comp

(i)
k |= Ai

(M (1)|...|M (n), R(1), . . . , R(n)) |=x 〈〈C〉〉
∧
i∈C ψi
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The main challenge in applying the scheme is to define the right assumptions and
to decompose the verified formula.

Example 6. Recall the multi-agent system S presented in Example 2, based on mod-
ule M (C(2))|M (1)|M (2). We already argued that it satisfies φ ≡ 〈〈1, 2〉〉(GFp(1)) ∧
(GFp(2)) as well as φ′ ≡ 〈〈1, 2〉〉(GFq(1))∧(GFq(2)), for p(i)(x(i)) = 1 and q(i)(s) =
i, cf. Example 3. We will now see if the verification of the formulas can be decomposed
using Rk.

By Example 5 we know thatM (C(2))|M (i) |= A012, whereA012 was an assumption
defined in Example 4. It is easy to see that M (C(2)) |= A012.

Consider the extended module M (2)|A012, which is nothing but M (2)|M (C(2))

with all the states marked as accepting. Assume further that agent 2 executes strat-
egy σ2 of Example 3. The resulting subsystem is presented in Figure 4. Note that, if
we focus on the values of variable s, the ω-regular language accepted by this automa-
ton is ((01)|(0222(01)∗011))ω , hence it periodically satisfies p({s}) = 1. In conse-
quence, σ2 can be used to demonstrate that (M (2)|A012, R

(2)) |=ir 〈〈2〉〉GFq(1), where
q(1)(s) = 1. Similarly, (M (1)|A012, R

(1)) |=ir 〈〈1〉〉GFq(2), where q(2)(s) = 2.
As a result, we have decomposed formula φ′ and constructed independent strategies

for agents 1 and 2. By the use of rule R1, we conclude that

(M,R(C(2)), R(1), R(2)) |=ir 〈〈1, 2〉〉(GFq(1)) ∧ (GFq(2)).

The situation for φ ≡ 〈〈1, 2〉〉(GFp(1)) ∧ (GFp(2)) is drastically different. We can-
not use the analogous reasoning, because 〈〈i〉〉GFp(3−i) is not a local constraint for
M (i). There is a unique decomposition of φ into local constraints, but proving that
(M (1)|A012, R

(1)) |=ir 〈〈1〉〉GFp(1) fails, as the system can get stuck in the state where
s equals 2 or infinitely loop between the states where s = 2 and s = 0. Changing the as-
sumption would not help, since we cannot avoid the infinite exclusion of the considered
train. Thus, while the scheme can be used to derive that S |=ir φ

′, it cannot produce the
(equally true) statement S |=ir φ.

5.2 Soundness and Incompleteness

The following theorem says that, if each coalition member together with its assumption
satisfies the decomposition of the formula, and its neighborhood satisfies the assump-
tion, then the original verification task must return “true.”

Theorem 1. The rule Rk is sound.

Proof. Let ∀i∈C (M (i)|Ai, R(i)) |=x 〈〈i〉〉ψi with (memoryless or perfect recall) im-
perfect information strategy σi and ∀i∈C Comp

(i)
k |= Ai. Here and in the rest of the

proof, x ∈ {ir, iR}.
Let us considerM =M (1)|...|M (n) such that (M,R(1), . . . , R(n)) |=x 〈〈C〉〉ψi and

fix its joint strategy σ for coalition C, where σ(i) = σi for every i ∈ C.
We will prove the soundness by contradiction. Suppose that for every (memoryless

or perfect recall) imperfect information joint strategy there exists an infinite word which
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implements this joint strategy, but do not satisfy
∧
i∈C ψi, i.e. there exists j ∈ C such

that w does not satisfy ψj . Let w = q0q1 . . . be such a word for the strategy σ and fix j.
Let us consider M (j)|Aj , where XM(j) and XAj are internal variables of M (j) and

Aj , appropriately. By the construction and the presumption that (M (j)|Aj ,R(j)) |=x
〈〈j〉〉ψj we get that every infinite word overXM(j)∪XAj

which implement (memoryless
or perfect recall) imperfect information strategy σj satisfy ψj .

However, the assumption Aj is guaranteed by Comp
(j)
k , hence for a word derived

by Comp
(j)
k we have its curtailment accepted byAj . Moreover, every word accepted by

M (j)|Aj is a curtailment of a word derived by M , and, in particular, w is such a word.
However, there exists a curtailment w|X

M(j)∪XAj
which satisfy strategy σj but is not

accepted by M (j)|Aj , which gives an obvious contradiction with (M (j)|Aj , R(j)) |=x
〈〈i〉〉ψj .

The obtained contradiction shows that there exists a joint strategy σ for the entire
model and (M (1)|...|M (n), R(1), . . . , R(n)) |=x 〈〈C〉〉

∧
i∈C ψi, which concludes the

proof.

Unfortunately, there does not always exist k < n for which the rule Rk is com-
plete, even in a very weak sense, where we only postulate the existence of appropriate
assumptions.

Theorem 2. The scheme consisting of rules {Rk | k ∈ N} is in general not complete.

Proof. Follows directly from Example 6.

5.3 Coalitional Assume-Guarantee Verification

In Section 5.2, we showed that achievable coalitional goals may not decompose into
achievable individual subgoals. As a result, the scheme proposed in Section 5.1 is in-
complete. A possible way out is to allow for assume-guarantee reasoning about joint
strategies of subcoalitions of C. We implement the idea by partitioning the system into
smaller subsystems and allowing to explicitly consider the cooperation between coali-
tion members.

Again, let S = (M (1), R(1)), . . . , (M (n), R(n)) be a system composed of asyn-
chronous agents . Moreover, let {P1, . . . , Pk : Pi ⊆ {1, 2, . . . , n}}, be a partitioning
of coalition C, and let C = {i : i /∈ C} = Ag \ C be the set of opponents of C.
By S(Pi) we denote the system composed of all the agents in Pi = {i1, . . . , is}, i.e.,
(M (Pi) =M (i1)| . . . |M (is), R(i1), . . . , R(is)). S(C) is defined analogously.

We extend the notion of neighbourhood to sets of agents as follows:

– NPi
1 = (

⋃
i∈Pi

N
(i)
1 ) \ Pi, NPi

k = (NPi

k−1 ∪
⋃
j∈NPi

k−1

N
(j)
1 ) \ Pi for k > 1,

– CompPi

k =M (x1)|...|M (xs) for NPi

k = {x1, ..., xs}.

Let x ∈ {ir, iR}. The generalized assume-guarantee rule is defined below:

PartPk

∀Pi∈P (M (Pi)|Ai, R(i1), . . . , R(is)) |=x 〈〈Pi〉〉
∧
j∈Pi

ψj
∀Pi∈P CompPi

k |= Ai
(M (1)|...|M (n), R(1), . . . , R(n)) |=x 〈〈C〉〉

∧
i∈C ψi
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As it turns out, the new scheme is sound, conservative with respect to enlarging the
neighborhood, and complete.

Theorem 3. The rule PartPk is sound.

Proof. Intuitively, we can proceed similarly to the proof of Theorem 1. Note that each
component Pi can be seen as single composed module with a imperfect information
strategy (memoryless or with perfect recall) being a joint strategy for the subset of
coalition C which is the component Pi. Moreover, we can take instead of CompPi

k the
union U of all the components Pj (and possibly C) which intersection with CompPi

k is
non-empty. It is easy to see, that if CompPi

k |= Ai then also U |= Ai.
This way we could fix the strategy for coalition C, deduce that every infinite word

as a composition of strategies σPi for its parts (C ∩ Pi)Pi∈P , and deduce that for every
word w which do not satisfy

∧
i∈C ψi there exists a single component Pj containing

Mi such that ψj would not be satisfied for any curtailment of w, while one of them
implements strategy σPi

being at the same time accepted by M (Pi)|Ai.

Proposition 1. If CompPi

k |= Ai then CompPi

k+1 |= Ai.

Proof. Let NPi

k+1 = {i1, . . . , it}, M = M (i1)| . . .M (it), NPi

k = {j1, . . . , jt′} and
M ′ = M (j1)| . . .M (jt′ ). Let us consider an infinite trace σ of M , with w ∈ (DX)ω

and u ∈ (DI)ω and σ′ = w1|X′ (u1|I′∩I ∪ w1|I′∩X)w2|X′ . . .. Note that one of the
curtailments of a word w1|X′w2|X′ . . . is derived by M ′, and thus its curtailment is
accepted by Ai.

Theorem 4. There exist a partition set P and k ≤ n such that the rule PartPk is
complete.

Proof. Straightforward, as we can take k = n and singleton partition P = {P1}, where
A1 is an automaton constructed on the base of the systemM (C), where all the states are
accepting ones (hence CompkP1

|= A1 as every word accepted by A1 is derived with a
trace of MC).

Hence (M (P1)|A1, R
(i1), . . . ,R(is)) |=x 〈〈P1〉〉

∧
j∈P1

ψj is just an equivalent for-
mulation of (M (1)|...|M (n), R(1), . . . , R(n)) |=x 〈〈C〉〉

∧
i∈C ψi, for x ∈ {ir, iR}.

Remark 1 (Complexity). The assume-guarantee schemes provide (one-to-many) reduc-
tions of the model checking problem. The resulting verification algorithm for ATL∗ir is
PSPACE-complete with respect to the size of the coalition modules, the size of the
assumptions, and the length of the formula. In the very worst case (i.e., as the assump-
tions grow), this becomes PSPACE-complete w.r.t. the size of the global model, i.e.,
no better than ordinary model checking for ATL∗ with memoryless strategies. On the
other hand, our method often allows to decompose the verification of the huge global
model of the system to several smaller cases. For many systems one can propose as-
sumptions that are exponentially smaller than the size of the full model, thus providing
an exponential gain in complexity.

Note also that the first scheme provides a model checking algorithm for ATL∗iR
that is EXPTIME-complete with respect to the size of the coalition modules, the
size of the assumptions, and the length of the formula, i.e., an incomplete but decidable
algorithm for the generally undecidable problem.
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5.4 Verification of Nested Strategic Operators

So far, we have concentrated on assume-guarantee specification of formulas without
nested strategic modalities. Here, we briefly point out that the schemes Rk and PartPk
extend to the whole language of ATL∗−X through the standard recursive model check-
ing algorithm that verifies subformulas bottom-up. Such recursive application of the
method to the verification of S |= φ proceeds as follows:

– For each strategic subformula φj of φ, do assume-guarantee verification of φj in S,
and label the states where φj holds by a fresh atomic proposition pj;

– Replace all occurrences of φj in φ by pj, and do assume-guarantee verification of
the resulting formula in S.

The resulting algorithm is sound, though there is the usual price to pay in terms
of computational complexity. The main challenge lies in providing decompositions of
LTL objectives for multiple strategic formulas, as well as multiple Büchi assumptions
(one for each subformula). A refinement of the schemes for nested strategic abilities is
planned for future work.

6 Case Study and Experiments

In this section, we present an experimental evaluation of the assume-guarantee verifica-
tion schemes of Section 5. As the benchmark, we use a variant of the factory scenario
from [26], where a coalition of logistic robots cooperate to deliver packages from the
production line to the storage area.

6.1 Experiments: Monolithic vs. Assume-Guarantee Verification

Decomposition to Individual Strategies. In the first set of experiments, we verified
the formula

ψ ≡ 〈〈R〉〉(
∧
r∈R energyr > 0)U delivered

expressing that the coalition of robotsR can maintain their energy level above zero until
at least one package is delivered to the storage area. Guessing that the first robot has
enough energy to deliver a package on his own, we can decompose the formula as the
conjunction of the following components:

ψd ≡ 〈〈r1〉〉F delivered, ψ
(i)
e ≡ 〈〈ri〉〉G energyri > 0, i ∈ R.

Note that, if ψd ∧
∧
i>1 ψ

(i)
e is true, then ψ must be true, too.

The experiments used the first (incomplete) scheme of assume-guarantee verifica-
tion. The results are presented in Table 1. The first column describes the configuration
of the model, i.e., the number of robots, locations in the factory, and the initial energy
level. Then, we report the performance of model checking algorithms that operate on
the explicit model of the whole system. The running times are given in seconds. DFS is
a straightforward implementation of depth-first strategy synthesis. Apprx refers to the
(sound but incomplete) method of fixpoint-approximation in [22]; besides the time, we
also report if the approximation was conclusive.
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Conf Monolithic verif. Ass.-guar. verif. Conf Monolithic verif. Ass.-guar. verif.
#st DFS Apprx #st DFS Apprx #st DFS Apprx #st DFS Apprx

2,2,2 8170 <0.01 0.6/No 1356 <0.01 <0.01/Yes 2,3,1 522 <0.01 <0.01/No 522 <0.01 <0.01/No
2,3,3 1.1e5 0.02 13/No 9116 <0.01 0.5/Yes 2,4,2 3409 <0.01 <0.01/No 3409 <0.01 <0.01/No
3,2,2 5.5e5 timeout 2.7e4 <0.01 3/Yes 4,3,1 memout 4.8e4 <0.01 4/No
3,3,3 memout 4.4e5 <0.01 58/Yes 6,3,1 memout 5.8e5 0.36 42/No
4,2,2 memout 5.2e5 timeout 8,3,1 memout timeout

Table 1. Results of assume-guarantee verification, scheme Rk (left), scheme PartPk (right).

Coalitional Assume-Guarantee Verification. For the second set of experiments, the
robots were divided in two halves, initially located in different parts of the factory. We
verified the following formula:

ψ ≡ 〈〈R〉〉FG(
∧

i∈{1,2,...,n/2}(deliveredi ∨ deliveredi+n/2)),

expressing that the coalition of robots can delivered at least one package per pair to
the storage area. Depending on the initial energy level of robots, the storage may not be
reachable from the production line. That means that the robots must work in pairs to de-
liver the packages. We use this insight to decompose the verification into the following
formulas:

ψ(i) ≡ 〈〈ri, ri+n/2〉〉FG(deliveredi ∨ deliveredi+n/2).

The results are presented in Table 1.

Discussion of Results. The experimental results show that assume-guarantee schemes
presented here enables to verify systems of distinctly higher complexity than model
checking of the full model. We have also conducted analogous experiments on the Sim-
ple Voting scenario of [22], with very similar results; we do not report them here due to
lack of space.

Interestingly, Table 1 shows that the application of incomplete assume-guarantee
scheme to fixpoint approximation (in itself an incomplete method of model check-
ing) often turns inconclusive verification into conclusive one. This is because fixpoint
approximation works rather well for individual abilities, but poorly for proper coali-
tions [22]. Rule Rk decomposes verification of coalitional abilities (very likely to resist
successful approximation) to model checking individual abilities (likely to submit to
approximation). It is not true in the case of the second experiment, as this time we did
not reduce the tested coalitions to singleton ones.

7 Conclusions

In this paper we propose two schemes for assume-guarantee verification of strategic
abilities. Importantly, they are both sound for the memoryless as well as perfect re-
call semantics of abilities under imperfect information. Moreover, the second scheme
is complete (albeit in a rather weak sense). The experiments show that both schemes
can provide noticeable improvement in verification of large systems consisting of asyn-
chronous agents with independent goals. Note also that the scheme Rk provides an
(incomplete) reduction of the undecidable model checking problem for coalitions with
perfect recall to decidable verification of individual abilities.
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Clearly, the main challenge is to formulate the right assumptions and to decompose
the verified formula. In the future, we would like to work on the automated generation
of assumptions. The first idea is to obtain a larger granularity of the global model by
decomposing agents into even smaller subsystems (and recomposing some of them as
assumptions). This can be combined with abstraction refinement of the assumptions
in case they are still too complex. We also plan to extend the notion of assumptions
to capture the agents’ knowledge about the strategic abilities of their coalition part-
ners. Positive results in that direction would significantly increase the applicability of
assume-guarantee schemes for model checking of asynchronous MAS.
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