SICS Software-Intensive Cyber-Physical Systems (2019) 34:201-212
https://doi.org/10.1007/s00450-019-00424-7

SPECIAL ISSUE PAPER l')

Check for
updates

Strategic logics for collaborative embedded systems

Specification and verification of collaborative embedded systems using strategic logics

Damian Kurpiewski' - Diego Marmsoler?

Published online: 5 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

In embedded systems, there is a clear movement from autonomous systems towards collaborative systems, forming so-called
collaborative system groups (CSGs), which collaborate to achieve common goals. Verification of CSGs, however, imposes
new challenges, which are difficult to address with traditional verification techniques. In the following, we investigate the use
of strategic logics for the analysis of CSGs, by means of a use-case in the domain of smart production systems. Our results
show that strategic model checking is useful to investigate certain aspects of CSGs, such as the impact of environmental
changes. However, our results also show some limitations of the approach, when it comes to the analysis of implementation-
level aspects, such as performance. Thus, we conclude that strategic model checking might complement existing approaches

for the analysis of CSGs.

Keywords Collaborative embedded system - Collaborative system group - Strategic logic - ATL

1 Introduction

More than ever, our daily life is determined by smart sys-
tems which are embedded into our environment. We use our
smart phones regularly in our daily life activities. Our cars
are equipped with 30—100 microprocessors with up to 100
million lines of software [28]. Smart production facilities
will raise our production of goods by up to 25 percent with
the potential to create as much as 1.8 trillion in new value
per year across the worlds factories by 2025 [27]. Due to the
impact of embedded systems on society, their verification
has become an important task and usually it is done using
traditional model checking techniques [11]: A system and its
environment is modeled in terms of state machines and then
analyzed whether or not the model satisfies certain safety or
liveness properties in a given environment.

B Damian Kurpiewski
d.kurpiewski @ipipan.waw.pl

Diego Marmsoler

diego.marmsoler @tum.de

Institute of Computer Science, Polish Academy of Sciences,
Jana Kazimierza 5, 01-248 Warsaw, Poland

Technische Universitit Miinchen, Boltzmannstr. 3, 85748
Garching bei Miinchen, Germany

While embedded systems were traditionally designed to
act autonomously, the trend goes to groups of systems, which
collaborate to achieve common goals more efficiently [30].
This development led to the notion of so-called collaborative
embedded systems (CESs), systems which behavior is driven
by certain goals and which may collaborate with other CESs
to achieve these goals. To this end, they may be grouped into
so-called collaborative system groups (CSGs), consisting of
several CESs with similar goals [34]. A simple example of
a CSG is a fleet of self-driving cars, in which each car rep-
resents a CES and collaborates with other cars to optimize
road traffic and avoid collisions. Another example, which
also serves as a use case for the work presented in this paper,
is a smart production system, in which production machines
are served by a group of autonomous transport robots with
the goal to provide a flexible production chain.

Compared to the verification of traditional embedded
systems, verification of CSGs provide new challenges: In
addition to check whether certain properties hold in combi-
nation with an environment, we are now also interested in
whether a group of systems is able to achieve a certain goal,
no matter what its environment does. For example, when
planning an autonomous car fleet, we would be interested in
determining whether the cars are indeed able to reach their
goal and optimize road traffic. Or, when planning the intro-

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

202

D. Kurpiewski, D. Marmsoler

duction of smart production systems, in which autonomous
transport robots carry items between machines which pro-
duce goods, we want to determine whether or not a given
set of robots is able to serve all the requests issued by the
machines. In summary, we want to answer two questions
regarding CSGs prior to implementing them:

— Is the goal of a CSG indeed feasible, i.e., is it possible
for the participants of the CSG to achieve the goal?
— What strategies can be used to achieve a certain goal?

Such questions, however, are difficult (if not to say impos-
sible) to answer using traditional verification techniques.

Thus, in the following, we propose an approach for the
analysis of CSGs, based on strategic logics [7]. To evaluate
it, we applied it for the analysis of smart production systems.
Therefore, we first specified the CESs and its environment in
terms of so-called concurrent game structures (CGS). Then,
we formalized goals in terms of ATL formulas and analyzed
them over the CGS using strategic model checking.

In this paper we report on our experience in applying
strategic model checking to the analysis of CSGs. Its major
contributions can be summarized as follows:

— It introduces a methodology for the analysis of CGSs
using strategic model checking.

— It presents the outcome of applying the method for the
analysis of a smart production factory.

— It reports our experience in applying strategic logic for
the analysis of CSGs.

To do so, the paper is structured as follows: First, we
provide an overview of strategic logics and describe our
approach in more detail. Then, we introduce our use-case
from the area of smart production factories. We then describe
how we applied the approach for the analysis of smart pro-
duction factories: we describe how we specified the group
and its environment in terms of a concurrent game structure
and how the group was analyzed by means of strategic model
checking. Finally, we discuss challenges and limitations of
using ATL for the analysis of CSGs and point to future work
to address them.

2 Strategic logics for collaborative
embedded systems

In the following, we present our approach. To this end, we

first provide some general background on ATL. Then, we
describe how it can be applied for the analysis of CSGs.

@ Springer

2.1 Alternating-time temporal logic
2.1.1 Models

We interpret ATL specifications over a variant of transition
systems where transitions are labeled with combinations of
actions, one per agent. Moreover, epistemic relations are used
to indicate states that look the same to a given agent. For-
mally, an imperfect information concurrent game structure or
iCGS is given by M = (Agt, St, Props, V, Act, d, 0, {~4|
a € Agt}) which includes a nonempty finite set of agents
Agt = {1, ..., k}, anonempty set of states St, a set of atomic
propositions Props and their valuation V: Props — 25,
and a nonempty finite set of (atomic) actions Act. The pro-
tocol function d: Agt x St — 24¢ defines nonempty sets
of actions available to agents at each state; we will write
da(q) instead of d(a, ¢), and define da(q) = [[,c4 da(q)
for each A C Agt,gq € St. Furthermore, o is a (deter-
ministic) transition function that assigns the outcome state
q' = o(q,ai,...,ar) to each state ¢ and tuple of actions
(o1, ..., k) suchthat o; € d(i, gq) fori = 1,..., k. Every
~4C St x St is an epistemic equivalence relation with the
intended meaning that, whenever g ~, ¢/, the states ¢ and g’
are indistinguishable to agent a. The iCGS is assumed to be
uniform, in the sense that ¢ ~, ¢’ implies d,(¢) = d,(q’).
Note that perfect information can be modeled by assuming
each ~ to be the identity relation.

2.1.2 Strategies

A strategy of agenta € Agtisaconditional plan that specifies
what a is going to do in every possible situation. Formally, a
perfect information memoryless strategy for a can be repre-
sented by a function s, : St — Act satisfying s,(q) € d,(q)
foreach g € St. Animperfect information memoryless strat-
egy additionally satisfies s,(q) = s,(q’) whenever g ~, ¢q’.
We refer to the former as Ir -strategies, and to the latter as
ir -strategies. Capital letter I stands for Perfect Information,
while lowercase i stands for Imperfect information. Similarly
lowercase r stands for Imperfect Recall, hence memoryless
strategies.

A collective x-strategy s 4, for coalition A C Agt and strat-
egy type x € {Ir, ir}, is a tuple of individual x-strategies, one
per agent from A. The set of all such strategies is denoted by
. By sals we denote the strategy of agent a € A selected
from s4.

2.1.3 Outcome paths

A path . = qoq1q> . .. is an infinite sequence of states such
that there is a transition between each ¢;, g;+1. We use A[i]
to denote the ith position on path A (starting from i = 0)
and A[7, j] to denote the part of A between positions i and j.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Strategic logics for collaborative embedded systems

203

Function out (g, s4) returns the set of all paths that can result
from the execution of a (complete) strategy s4, beginning at
state g. Formally:

out(q,sa) = {A = q0,.91,92--- | go = ¢q and for each
i =0,1,...there exists (aél, e, aék> such
that o}, € d,(q;) for every a € Agt, and
o), = Sala(qi) foreverya € A, and g;11 =
o(qi, ozfll, e, aék)}.

We will sometimes write ous™ (g, sa) instead of out (g, s4).

Moreover, the function out™(q,s4) = Ugea Uq~aq’
out(q’, s a) collects all the outcome paths that start from states
that are indistinguishable from ¢ to at least one agent in A.

2.1.4 Syntax

We use a variant of ATLhat explicitly distinguishes between
perfect and imperfect information abilities. Formally, the
syntax is defined by the following grammar:

pu=pl=dldng|(A)Xe | (A) G| (A)eUs,

where x € {Ir, ir}, p € Propsand A C Agt. Weread (A)), ¥
as “A can identify and execute a strategy that enforces y,” X
as “in the next state,” G as “now and always in the future,”
and U as “until.” The perfect information modality (A)),. v
can be read as “A might be able to bring about y if allowed
to make lucky guesses whenever uncertain.” We focus on
the kind of ability expressed by {(A)). . The other strategic
modality (i.e., {(A)),) will prove useful when approximating

(AN, -
2.1.5 Semantics

With given iCGS model M and state g, the semantics of
ATLan be defined as follows:

- M,qE piffg e V(p),

- M,q =~ iff M.q i o,

-MgEoAYitM.qgE pandM.q = ¢,

- M, q = (A),X¢ iff there exists strategy s4 € X7 such
that for all A € out*(q, s4) we have M, A[1] & ¢,

- M,q | (A),G¢ iff there exists s4 € X such that for
all A € out*(q, s4) and i € N we have M, A[i] & ¢,

- M,q E (A), v Ug iff there exists s4 € X7} such
that for all A € out*(q, sa) there is i € N for which
M, \lilE ¢and M, A[j] = ¢ forall0 < j < i.

The standard boolean operators (logical constants T and
L, disjunction Vv, and implication —) are defined as usual.
We will often write (A)g instead of {{A)). X¢ to express one-
step abilities under imperfect information. Additionally, we

define “now or sometime in the future” asFo = T U g. Itis
easy to see that M, g = ((A)), F¢ iff there exists a collective
strategy s4 € Ej; such that, on each path A € out*(q, s4),
there is a state satisfying ¢. In that case, we can also say that
¢ is x-reachable from q.

3 Smart production factories

In the following, we describe our use-case in the domain of
Industry 4.0, in general, and specifically smart production
factories (SPFs) [32]. In such a factory, different machines
are placed in different locations to produce certain items.
Thereby, production of certain items may require other items
and machines actually form a distributed production chain.
Since machines are distributed amongst the factors, items
somehow need to be transported from one machine to another
one.

Usually, this is done by means of so-called automated
guided vehicles with pre-defined, fixed routes. In SPF, how-
ever, items are carried by a fleet of autonomous transport
robots (Fig. 1) which can navigate freely in their environ-
ment, without being bound to a fixed track. A typical fleet
consists of 4-20 robots which can carry 50-200kg load each.
Each robot has a pre-recorded map of the factory (Fig. 3)
depicting no-go areas and the position of charging stations,
machines, and storage areas. Moreover, robots have a laser
scanner which delivers an accurate image of its environment
and which is combined with the map in order to determine its
current position. In order to move around, robots need elec-
tricity which is stored in lithium batteries. In order to keep the
robots moving, their batteries need to be recharged from time
to time. Machines communicate the production of a new item
as well as their need for certain items from other machines by
broadcasting it to all the robots via wireless communication.
Robots may also communicate to each other via a wireless
network.

Compared to traditional automated guided vehicles, auto-
nomous transport robots provide the following benefits:

— A fleet of transport robots can be extended even during
operation of the factory; no intervention in the running
operation is necessary.

— Changing the location of a machine just requires to adapt
the corresponding target point in the internal map of the
robots; it is not even necessary to designate new routes.

— Broken transport robots do not interrupt production since
another robot may take over the responsibilities of the
broken one.

— Similarly, obstacles or people blocking a route do not
interrupt production since they may be easily circum-
vented by a robot.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

204

D. Kurpiewski, D. Marmsoler

Fig.1 Loading of a transport robot

— Finally, workload may be optimized since robots respon-
sible for serving certain machines which are currently idle
may autonomously move to support the transportation of
items from other machines which are more productive.

4 Analyzing smart production factories
using strategic logics

Figure 2 depicts our approach for the use-case presented
above. It is basically an adapted version of the general
approach presented in Sect. 2 with one addition: in order to
support the creation of CGSs for different factory settings, we
developed a language for the specification of factory setups
and a corresponding tool! to map a specification to a cor-
responding CGS. We then specified different variants of the
use-case using our language and generated corresponding
CGSs using our tool. In the next step, we specified goals for
the use-case in terms of ATL formula over the CGS. Finally,
we analyzed them using a strategic model checker, based on
the algorithm explained in [21].

4.1 Specifying smart production factories
As mentioned above, we developed a language to support
the specification of different factory settings. Our language

can be used to specify factory layouts and settings for the
machines.

! The tool is available online and can be downloaded at https://github.
com/blackbat13/ATLFormulaChecker.

@ Springer

. specify Factory
Factory Settings Specification
® CGS -
for Factory

ATL
Formula

specify
Goals

analyze
Strategies

Fig. 2 Verification approach showing manual (stick-figure) and auto-
mated (gear-wheel) activities (rounded rectangles) and corresponding
artifacts (rectangles)

3 Ry

4 M,

6 Ry

Fig. 3 Conceptual representation of factory map with three obstacles
(dashed parcels), two machines M| and M», and two robots Rj and R;

4.1.1 Factory layout

A factory layout describes the size of a factory in terms of
a matrix of floor-parcels. Moreover, it describes the number
and position of static obstacles and machines. Finally, it also
provides the number and initial position of available robots.

Example 1 (Simple Factory Layout) Figure 3 depicts an
example of a factory map consisting of 6 % 6 = 36 parcels.
Obstacles are present at parcel (3, 4), (4, 1), and (4, 2). Two
machines are placed at parcels (2,4) (machine M;) and
(5,2) (machine M»), respectively. In addition, two robots
are placed at parcels (2, 6) (robot R») and (5, 3) (robot Ry).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Strategic logics for collaborative embedded systems

205

move, wait wait

pick, leave produce

input
output
position

items

position
items

robot machine

Fig.4 CGS for robots and machines

4.1.2 Machine requirements

In addition to the layout of the factory, production require-
ments need to be specified for machines. To this end, our
language allows to specify how many items of a certain type
are required by a machine to produce a new item. Thereby,
the type of an item is modeled by the identifier of a machine
able to produce that item.

Example 2 (Production requirements for machine M?2) We
can add production requirements for machine M?2 of the lay-
out created in Example 1. With

[M1+— 1xM2],

for example, we specify that machine M 1 requires one item
from machine M2, in order to produce an item itself. O

In addition to required items, one needs to provide a
maximal number of produced items per machine. This is
required in order to limit the size of the produced model,
since unbounded production would lead to an infinite CGS.

4.2 From the specification to the model

A factory setup can be used to generate a corresponding CGS
which, in turn, can be used for analyses. A CGS produced
from a factory specification has two types of agents: robots
and machines. Figure 4 depicts the state and possible actions
for both types of agents.

4.2.1 Robots

A robot’s overall state is determined by the following vari-
ables:

— A pair of integers, representing the coordinate of the
robot’s current position within the factory.

— An integer representing the type of item currently carried
by the robot. The item type is represented by the identifier
of the machine able to produce this type of item. For

example: a situation in which the robot currently carries
an item produced by machine 1 is modeled with a value
“1”. A situation in which a robot does not carry any item
is modeled by “—1".

Atany pointin time, arobot may perform one of the following
actions:

— It may wait or move one parcel to the south, north, west,
or east. Moving will change a robot’s position and it is
restricted by the factory layout: A robot can only move
inside a factory and has to avoid obstacles. Moreover,
collision of robots is possible and occurs whenever two
robots enter the same field. After collision, the corre-
sponding robots cannot move again.

— If the robot is located at a parcel containing a machine, it
may pick an item from, or leave it to the corresponding
machine. Picking or leaving items changes the carrying
state of the robot.

4.2.2 Machines

A machines state, on the other hand, is determined by four
different variables:

— Similar to a robot, also a machine is located at a position
within the factory which is modeled by a pair of integers.

— In addition, a machine’s state is also determined by the
number of input items of each type, available to the
machine. This is modeled by a list of integers, with one
entry for each type of item (again, the type is determined
by the identifier of a machine able to produce this item).
The first entry, for example, determines the number of
items required from machine 1. The second entry deter-
mines the number of items required from machine 2 etc.

— Also the output produced by a machine influences its
state. It is modeled by an integer, representing the amount
of items waiting for pick-up by a robot.

— Finally, variable items determines the total number of
items produced by the machine, so far. In contrast to the
output variable, the items variable does not represent the
number of items waiting for pickup but rather the total
amount of items currently produced by the machine. The
variable is introduced to limit the size of the produced
model.

A machine may perform one of two actions:

— It may wait for items it requires for the production of a
new item.

— If all the required items are available, it may produce
a new item. Production of an item reduces a machine’s
input state and increases its output state and item count.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

206

D. Kurpiewski, D. Marmsoler

Example 3 (CGS for simple factory) The CGS produced for
the example factory setting specified in Examples 1 and 2
consists of 3581 different states in total. Figure 5 depicts a
small fragment of the overall CGS. It shows how the different
robots and machines are encoded into the model:

r_pos models the position of each robot.

m_pos models the position of each machine.

r_items models the carried items for each robot.

m_in models the required items from each machine
for each robot.

m_out models the produced items by each machine.

it_count models the number of produced items by
each machine.

pr_times models the number of steps required by each
machine to produce a new item.

m_clocks models the elapsed time since a machine
started producing a new item.

prop_stuck marks that a machine was stuck at some point

in time, i.e., thatit could not produce any item
due to a full output.

The state at the bottom of Fig. 5, for example, is a state in
which one machine is located at parcel (1, 3) and another one
at (4, 1). Both machines have an empty input and the second
machine has one item in its output waiting for pickup. The
robots, on the other hand, are located at parcels (1, 3) and
(4, 1), respectively. None of them currently carries an item.
In total, one of the machines produced one item, so far. From
this state, the first robot may move one parcel to the north,
causing the state to change to the upper right one. O

4.3 Verification

Defining the model and its specification is only part of the
work. Once the CGS is created and desired properties are
known, verification can be done. As previously mentioned,
we specify our goals in ATL, both with perfect and imperfect
information and imperfect recall. Then we run model check-
ing algorithms to check whether or not a given formula holds
over the model. We show how it works on a simple example.
First we begin with specifying the configuration we would
like to verify. We will use the factory setting as specified in
Examples 1 and 2. In the next step we generate the model
in terms of a corresponding CGS. Once the model is gener-
ated, we need to provide a formula for the verification, such
as (R) F produce. The latter formula can be interpreted
as follows: a coalition of robots R has a strategy to enforce
that eventually each machine will produce at least one item.
Given the formula and the model we can run model check-
ing algorithms to check whether the formula holds over the
model. The algorithm itself is a fixpoint computation that

@ Springer

r_pos: [(0.4), (5,2)]
m_pos: [(1,3), (4,1)]
r_items: [-1,-1]
m_in: ([0,0.{0,0]]
m_out: [0,1]
it_count: [0,1]
pr_times: [0.0]
m_clocks: [0.0]
prop_stuck: False

[Wait, S, Wait, Wait]

r_pos: [(0,4), (5,3)]
m_pos: [(1,3), (4,1)]
r_items: [-1,-1]
m_in: [[0,0].{0,0]]
m_out: [0,1]
it_count: [0.1]
pr_times: [0,0]
m_clocks: [0,0]
prop_stuck: False

[Wait, N, Wait, Wait]

[N, N, Wait, Wait]

[S. S, Wait, Wait]
[N, Wait, Wait, Wait]

[S. Wait, Wait, Wait]

r_pos: [(0,5), (5,3)]
m_pos: [(1.3), (4,1)]
r_items: [-1,-1]
m_in: [[0,0].{0.0])
m_out: [0,1]
it_count: [0.1]
pr_times: [0,0]
m_clocks: [0.0]
prop_stuck: False

Fig.5 Fragment of the CGS produced for the example factory setting
specified in Examples 1 and 2

works as follows: first, we begin with all the states satisfying
the desired property (winning states), i.e., states where each
machine has produced at least one item. Then we look for
states from which we can reach our current states in one step.
In other words, we look for states where the coalition R has a
strategy to enforce moving from this state to one of the win-
ning states. Then we add these states to our set (mark them as
the winning states) and repeat the process, until a fixpoint is
reached. If the final set of states contains the beginning state
of the model, then the result of the formula is true, otherwise
it is false. An overview of the verification results obtained
for our use-case is presented in Sect. 5.

4.4 Variants

To investigate different variants of the use-case, we extended
the basic model which resulted in three different extensions
of the model presented so far.

4.4.1 Charging for robots

In the basic version of our model we do not consider energy
for robots. Rather, we assume infinite energy for each robot.
In order to investigate scenarios in which a robot may indeed
run out of battery we extended our model with a notion of
energy consumption for robots. Thereby, the specification of
factory layouts may contain number and position of charg-
ing stations as well as the maximal amount of energy for

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Strategic logics for collaborative embedded systems

each robot. The generated model is in a way that it requires
one energy consumption for each movement of a robot.
Moreover, robots are charged immediately after arriving at a
charging station and performing action “charge”.

4.4.2 Storage areas

In some settings, a factory may provide storage areas for
items. To cover such cases, we provide an additional variant
of the basic model. Here, a user may specify the number and
position of storage areas. In the generated model, storage
areas can be used to store items and thus avoid machines to
be stuck due to full output.

4.4.3 Production time

In the basic model, production of an item occurs instanta-
neous. However, it could be interesting to investigate also
the impact of production time on service strategies. To this
end, we provide an additional extension of the basic model
in which we can provide production times for each machine.
The production of an item then requires the provided amount
of time.

5 Results

In previous sections we have defined the use case, its configu-
ration and possible variants thereof. We have also introduced
the language to model it and shown how one can verify a
given property of such a model. In this section, we present the
outcome of the analysis of different factory settings. To this
end, we first introduce different factory configurations and
some properties we would like to analyze. Then, we describe
the outcome of the analysis for each of the properties.

5.1 Factory configurations

Different variants of the model may result in different num-
ber of states. For example adding storage areas to the factory
layout changes the actual size of the model and may have
an impact on the verification times. In order to have a good
understanding of how such changes may affect the exper-
iments, we present some details regarding the generation
process of these different models in Table 1. Headers should
be interpreted as follows:

En.—initial energy of the robots; inf means that robots
don’t use energy

Ch.—number of charging stations in the factory

Stor.—number of storage areas in the factory

— Pr. t—production time for the machines

207
Table 1 Model generation results
En. # Ch. # Stor. Pr. t. It. 1. #St. Gen.
inf 0 0 0 1 3581 0.76
inf 0 0 1 1 4161 0.83
inf 0 0 0 2 13,912 3.07
10 0 0 0 1 28,667 6.23
10 1 0 0 1 48,426 10.65
inf 0 1 0 1 4670 1.32

— It. .—item limit for the machines, i.e. how many items
can any machine produce

— # St.—number of states in the generated model

— Gen.—generation time of the model in seconds

As the results show, the modification that drastically
affects the size of the model is adding energy to the robots.
For example lets take a look on the first, simplest configura-
tion: no energy limit, no charging stations and storage areas,
no time requirements for productions and production limited
to one item per machine. Such a simple model consist of
3581 different states. If we change this configuration by only
specifying initial energy for robots of 10 units, the number
of states in the generated model goes up to 28, 667 (this cor-
responds to an increase in size by a factor of 8). If we also
add one charging station to the model, thus allowing robots
to recharge their energy, we end up with 48,426 states, which
is 13 times more than in the initial, simplest configuration.

5.2 Properties

We considered four different properties that are important
for the safe functioning of the presented factory scenario.
Formulas representing these properties are as follows:

— ¢1: {R) F(produce,)

— ¢2 1 (R) F (—stuck A produce,)

— ¢3: {(R) F(energy > 0 A produce,,)
— ¢4 : =(R")G(—produce,)

where:

— produce, denotes that each machine has produced at
least n items, and

— stuck denotes that a machine is stuck, i.e., that its input
requirements are met, but its output isn’t empty.

The first three of the presented formulas describe the prop-
erly functioning of the factory. ¢; means that when robots
work together they can make sure that each machine will
produce the required number of items. As one can see this

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

208

D. Kurpiewski, D. Marmsoler

is a rather basic property, but it’s a necessary condition for
the properly functioning of the factory. Still this may be not
enough to describe an efficiently operating factory. That we
try to achieve using formula ¢;, where robots not only need
to make each machine produce the required number of items,
but they also need to make sure that each machine will pro-
duce a new item when all required items are delivered. This
way we know that a factory setting is efficient, i.e., there is no
redundant waiting time for machines. The third formula ¢3
describes configurations in which no robot will be left with
zero energy after executing its commands.

The last formula ¢4, unlike the others, describes a security
property of the model. Imagine a possible scenario: some-
one wants to disturb the work in the factory by hijacking, or
maybe just disabling some of the robots. The question is, how
secure is the factory against such an attack? That is what is
the minimal subset of the robots that the adversary must take
control of, in order to disturb the factory production line?

5.3 Basic production

In this section we consider formula ¢ : {R)) F (produce,,).
The goal for the coalition of robots is to reach a state, in which
each machine has produced at least n items. We will test this
property in different configurations of the model. First, we
begin with a classic model based on a factory layout as pre-
sented in Fig. 3. The model consist of two robots and two
machines. Robots can move freely, apart from places marked
as an obstacle. Robots don’t consume energy and can carry
at most one item—there is no storage in the factory. Require-
ments for machines are simple: the first machine doesn’t need
anything to produce an item and the second machine needs
one item from the first machine. By manipulating the param-
eters of the model we can change: items limit, machines
requirements and production times for each machine. We
can also modify parameter n of the formula. As the experi-
ments show, the formula always holds, both under perfect and
imperfect information, except when there is a conflict in the
parameters. A conflict occurs when, for example, machine
requirements are constructed in such a way, that at least one
of the machines will be always blocked. Results are shown
in Table 2. For simplicity, machines are named A and B.
The configuration should be interpreted as follows: the first
parameter defines the limit for the production, and the second
one defines production times for machines. For simplicity, if
production times for both machines are 0, we will write only
0 as the second parameter. If a machine requires some time
to produce an item, we will write machine : number, where
machine is the letter representing the machine and number
is production time for this machine. If some machines are
ommitted we assume that production time for them is by
default 0.
The results should be interpreted as follows:

@ Springer

Table 2 Results for model checking ¢

Conf. #states IRt IR iR t. iR (appr.)
(1,0) 3581 1.1 True 0.3 True
(3,0) 26,039 2.4 True 1.1 True
(3,A:5) 72,573 8.3 True 5.7 True

— conf.—configuration, as explained above

— # states—number of states in the generated model

— IR t.—perfect information verification time in seconds

— IR—result under perfect information

— iR t.—imperfect information verification time in seconds

— iR (appr.)—approximated result for the imperfect infor-
mation

Of course, in such a simple environment, results of the
experiments are as expected. Perhaps one can get more inter-
esting scenarios by specifying finite charges for the robots.
In this version of the model, apart from the previous param-
eters, we can also modify the number of charging stations,
their positions and initial charge of the robots. Again, we
conducted some experiments, using previous configurations
with additional parameters. First we begun with a simpler
scenario, i.e., a factory without charging stations. In such
an environment one can already suspect the result of the for-
mula. The strategy for robots seems to be simple: find shortest
path to fulfill machine requirements. Of course, there are
some obstacles along the way, such as avoiding collisions.

While conducting experiments it is possible to find the
minimal initial charge for the robots in a given configuration,
under which the formula is satisfied. There can be some dif-
ferences based on the considered type of information. Under
imperfect information, robots may require more energy than
under perfect information. We can also manipulate positions
of the charging station to find optimal positioning.

5.4 No stuck time

As said before, proper functioning of the factory is sometimes
not enough. Sometimes we need to ensure that a considered
configuration is not only stable, but also efficient. After the
previous section, we know under which configurations the
system is stable, i.e. robots can enforce production of n items
from each machine. Now, we want to know when the system
is efficient, i.e. each machine can produce a new item imme-
diately after its requirements are fulfilled (when it receive all
items needed for production from the robots). In other words,
we will call a configuration efficient, if a coalition of robots
has a strategy to ensure that each machine will produce the
required number of items and while doing so, no machine will
be stuck. Our stuck property in the model is sticky—once a
machine is stuck it is stuck forever. We took the configura-

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Strategic logics for collaborative embedded systems 209
Table 3 Results for model checking ¢» Table 5 Results for model checking ¢4

Conf. #states IRt. IR iRt iR (appr.) #robots Normal Charging Storage
(1,0) 3581 0.92 True 0.18 True 1

(3,0) 26,039 0.002 False 0.002 False 3 2 1 2
(3,A:5) 72,573 0.005 False 0.005 False

(3,A:5,st:1) 198,762 10.5 True 8.7 True

Table 4 Results for model checking ¢3

Conf. #states IRt. IR iRt. iR (appr.)
(1,0, en: 5, ch: 0) 2681 0.0002 False 0.0001 False
(1,0,en:9,ch: 0) 20,439 0.6 True 0.05 True
(1,0,en: 5,ch: 1) 5660 0.0004 False 0.0003 False
(1,0,en: 6,ch: 1) 16,489 1.3 True 0.3 True

tions from the previous section and run our model-checking
algorithm again, this time with formula ¢, . Results are shown
in Table 3.

5.5 No robot left behind

In order to talk about energy level we need a model with
energy. When checking formula ¢3 we will only consider
models with energy. Based on its initial level, robots may or
may not be able to fulfill their duties. When thinking about
the property described by formula ¢3, some questions arise:
What is the minimal level of the initial energy required for
each robot? What is the optimal positioning of the charging
stations and how many are required? Does storage affect this
property? How does imperfect information affect this prop-
erty? How do production times of the machines affect this
property? We try to answer these questions by conducting
several experiments on different configurations. First, lets
describe basic requirements for our scenario. As previously,
we consider a 6 x 6 factory layout with two machines and two
robots. We will consider two configurations of the production
times for the machines: [A:0, B:0] and [A:2, B:3]. This way,
we can see how production times will affect our results. As
for the number of items we want to produce, we choose 1 and
2. As shown before, the number of states grows fast, when
we add energy to the robots, so it is only sensible to limit the
size of the model by using low limits for production. When
combined together, our requirements give us four different
configurations and we try to find optimal configurations for
the rest of the parameters: initial energy, charging stations
and storage areas. The results are summarized in Table 4.

5.6 Security property

There are various ways to describe security properties. In
our factory scenario, the level of security can be described

by the minimal number of robots that an adversary needs to
take control of, in order to be able to disturb the work of the
factory. For example, lets say that we have a factory with
10 robots. Rendering 3 of them malfunctioning won’t affect
the system, but if the adversary takes control of the fourth
robot, then the rest of them won’t be able to ensure proper
functioning of the factory anymore. In this situation the min-
imal number of robots needed to disturb the production is
4 out of 10. Of course, the result may vary depending on
the factory configuration, layout, and even on the concrete
robots that are hacked. Work of some of the robots may be
more important to ensure proper production, than the work
of other robots. Table 5 show results of the experiments con-
ducted on a smaller, 4 x 4 factory. First column (#robots)
contains number of robots in the tested configuration. Next
columns shows minimum number of robots that need to be
hacked in order to disrupt the work of the factory in the differ-
ent variants of the model: without energy and storage, with
energy and charging stations, with storage areas.

6 Discussion

In the following, we reflect on our experience in using strate-
gic logics for the analysis of CSGs. To this end, we discuss
promising observations as well as possible limitations of the
approach. Based on our observation, we then provide some
suggestions for the use of our approach.

6.1 Advantages and limitations

In general, strategic logics are well-suited for the analysis
of situations in which agents collaborate to achieve common
goals. Since such situations are common in the context of
CSGs, strategic logic seems well-suited to support the anal-
ysis of such system groups. This suspicion is indeed also
confirmed by our results, in which we were able to verify a
set of interesting properties for a special type of CSG.

As with every automatic verification approach, model
checking reaches its limit when the models become too large.
In our experiments we were unable to test models with more
than 4 robots and 2 machines, due to the memout caused by
the space explosion.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

210

D. Kurpiewski, D. Marmsoler

6.2 Suggestions

Based on our lessons learned, we provide some suggestions
for using strategic model checking for the analysis of CSGs.

First, strategic model checking seems really promising to
investigate the impact of different setups on a group’s ability
to achieve its goals. To this end, one can specify a goal of
a CSG, adapt the settings and investigate whether the goal
is still feasible. In our use case, for example, we applied
strategic model checking to find the minimal level of initial
energy of robots which is necessary for them to achieve their
goal. In another example, we used the approach to investigate
the minimal number of robots required to achieve a certain
goal.

An interesting supplement in using strategic logic is its
ability to deal with imperfect information. This is interesting,
from the point of view of CSGs, since it allows to analyze
the effect of communication problems within the group. In
our use case, for example, there were situations in which a
group of robots could indeed serve all requests of machines,
as long as communication was working. However, for the
case in which communication was not properly working, the
robots where not able to achieve their goal anymore.

7 Related work

Collaborative embedded systems can be seen as a special
case of a broader metaphor, namely that of agents in a multi-
agent system [36,39,40]. A multi-agent system (MAS) is a
system that involves several autonomous entities that act in
the same environment. Agents in a MAS are usually software
entities, as opposed to CES where the actors are often phys-
ical artifacts supervised by an intelligent controller. On the
other hand, most models of multi-agent systems are general
enough to cover systems involving both virtual and physical
components. The most prominent applications of the MAS
framework in the multi-robot context focus on market mech-
anisms for multi-robot coordination [12,31] and in particular
on auction-based job allocation and scheduling [24,25]. A
preliminary analysis of logistic robots from the MAS point
of view was presented recently in [33].

Many relevant properties of multi-agent systems refer to
strategic abilities of agents and their groups. Properties of
this kind can be conveniently specified in modal logics of
strategic ability, of which alternating-time temporal logic
(ATL) [4,5] is probably the most popular. Typical contribu-
tions include results concerning the conceptual soundness
of a given semantics [1,2,13,16,20,35], meta-logical prop-
erties [8,17], and the complexity of model checking [6,
14,17,35,37]. From the practical point of view, a number
of model checking tools have been created or extended to
accept models of multi-agent systems as input — most notably

@ Springer

Mocha [3], MCK [15,38], and MCMAS [26]. A compre-
hensive overview can be found in [19]. Moreover, the last
couple of years have witnessed a growing number of seri-
ous attempts at overcoming the complexity of verification
for ATL in more sophisticated scenarios [9,10,18,23,29], and
even actual attempts at model checking of a concrete voting
procedure [22]. All of this suggests that the time is ripe to use
both multi-agent models and multi-agent logics to enhance
the design, specification, and verification of collaborative
embedded systems.

8 Conclusion

In this paper, we presented an approach for the verification
of collaborative system groups (CSGs) using strategic logics.
We present a case study in the area of smart production fac-
tories and evaluated the approach by using it to analyze such
systems. To this end, we developed a simple language for the
specification of smart production factories and a correspond-
ing algorithm to map such specifications to a corresponding
concurrent game structure (CGS). Then, we investigated dif-
ferent properties for such systems and analyzed them by
means of model checking over the generated CGS.

Our results suggest that strategic logics are well suited to
analyze important aspects of CSGs, such as their ability to
achieve certain collaboration goals under different circum-
stances. On the other hand, the approach seems less suited for
the analysis of implementation aspects such as performance.

Our approach may be used to complement existing veri-
fication approaches for CSGs which are based on traditional
model checking techniques. To this end, future work should
investigate further case studies in different CSG domains,
such as fleets of self-driving cars.

Acknowledgements The authors acknowledge the support of the
National Centre for Research and Development (NCBR), Poland, under
the PolLux Project VoteVerif (POLLUX-IV/1/2016). We also thank
Wojtek Jamroga for assistance with the related work section.

References

1. Agomes T (2004) A note on syntactic characterization of incom-
plete information in ATEL. In: Proceedings of workshop on
knowledge and games, pp 34-42

2. Agomes T, Goranko V, Jamroga W, Wooldridge M (2015) Knowl-
edge and ability. In: van Ditmarsch H, Halpern J, van der Hoek W,
Kooi B (eds) Handbook of epistemic logic. College Publications,
New York

3. Alur R, de Alfaro L, Grossu R, Henzinger T, Kang M, Kirsch C,
Majumdar R, Mang F, Wang BY (2001) jMocha: a model-checking
tool that exploits design structure. In: Proceedings of international
conference on software engineering (ICSE), pp 835-836. IEEE
Computer Society Press

4. AlurR, Henzinger TA, Kupferman O (1997) Alternating-time tem-
poral logic. In: Proceedings of the 38th annual symposium on

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Strategic logics for collaborative embedded systems

211

10.

11.

12.

13.

14.

17.

19.

20.

21.

22.

foundations of computer science (FOCS), pp 100-109. IEEE Com-
puter Society Press

Alur R, Henzinger TA, Kupferman O (2002) Alternating-time tem-
poral logic. J] ACM 49:672-713. https://doi.org/10.1145/585265.
585270

Bulling N, Dix J, Jamroga W (2010) Model checking logics of
strategic ability: complexity. In: Dastani M, Hindriks K, Meyer
JJ (eds) Specification and verification of multi-agent systems.
Springer, Berlin

Bulling N, Goranko V, Jamroga W (2015) Logics for reasoning
about strategic abilities in multi-player games. In: van Benthem
J, Ghosh S, Verbrugge R (eds) Models of strategic reasoning.
Springer, Berlin, pp 93-136

Bulling N, Jamroga W (2014) Comparing variants of strategic abil-
ity: how uncertainty and memory influence general properties of
games.] Auton Agents Multi Agent Syst 28(3):474-518

Busard S, Pecheur C, Qu H, Raimondi F (2014) Improving the
model checking of strategies under partial observability and fair-
ness constraints. In: Formal methods and software engineering,
lecture notes in computer science, vol 8829, pp 27-42. Springer.
https://doi.org/10.1007/978-3-319-11737-9_3

Busard S, Pecheur C, Qu H, Raimondi F (2015) Reasoning about
memoryless strategies under partial observability and uncondi-
tional fairness constraints. Inf Comput 242:128-156. https://doi.
org/10.1016/].ic.2015.03.014

Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification
of finite-state concurrent systems using temporal logic specifica-
tions. ACM Trans Program Lang Syst 8(2):244-263. https://doi.
org/10.1145/5397.5399

Dias M, Zlot R, Kalra N, Stentz A (2006) Market-based multirobot
coordination: a survey and analysis. Proc IEEE 94(7):1257-1270.
https://doi.org/10.1109/JPROC.2006.876939

Dima C, Enea C, Guelev D (2010) Model-checking an alternating-
time temporal logic with knowledge, imperfect information, perfect
recall and communicating coalitions. In: Proceedings of games,
automata, logics and formal verification (GandALF), pp 103-117
Dima C, Tiplea F (2011) Model-checking ATL under imperfect
information and perfect recall semantics is undecidable. CoRR
abs/1102.4225

. Gammie P, Meyden R (2004) MCK model checking the logic of

knowledge. In: Proceedings of the 16th international conference on
computer aided verification (CAV’04), LNCS, vol 3114, pp 479-
483. Springer

Guelev D, Dima C (2012) Epistemic ATL with perfect recall, past
and strategy contexts. In: Proceedings of computational logic in
multi-agent systems (CLIMA), lecture notes in computer science,
vol 7486, pp 77-93. Springer. https://doi.org/10.1007/978-3-642-
32897-8_7

Guelev D, Dima C, Enea C (2011) An alternating-time temporal
logic with knowledge, perfect recall and past: axiomatisation and
model-checking. J Appl Non Class Logics 21(1):93-131

. Huang X, van der Meyden R (2014) Symbolic model checking

epistemic strategy logic. In: Proceedings of AAAI conference on
artificial intelligence, pp 1426-1432

Jamroga W (2015) Logical methods for specification and verifica-
tion of multi-agent systems. ICS PAS Publishing House, Manila
Jamroga W, van der Hoek W (2004) Agents that know how to play.
Fundam Inform 63(2-3):185-219

Jamroga W, Knapik M, Kurpiewski D(2017) Fixpoint approx-
imation of strategic abilities under imperfect information. In:
Proceedings of the 16th international conference on autonomous
agents and multiagent systems (AAMAS), pp 1241-1249. IFAA-
MAS

Jamroga W, Knapik M, Kurpiewski D (2018) Model checking
the selene e-voting protocol in multi-agent logics. In: Proceedings

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

of the 3rd international joint conference on electronic voting (E-
VOTE-ID), lecture notes in computer science, Springer. To appear
Jamroga W, Knapik M, Kurpiewski D, Mikulski £ (2018) Approxi-
mate verification of strategic abilities under imperfect information.
Artificial intelligence, To appear

Koenig S, Keskinocak P, Tovey CA (2010) Progress on agent
coordination with cooperative auctions. In: Proceedings of the
twenty-fourth AAAI conference on artificial intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010

Lagoudakis M, Markakis V, Kempe D, Keskinocak P, Koenig S,
Kleywegt A, Tovey C, Meyerson A, Jain S (2005) Auction-based
multi-robot routing. In: Proceedings of the international conference
on robotics: science and systems, pp 343-350

Lomuscio A, Qu H, Raimondi F (2015) MCMAS: an open-source
model checker for the verification of multi-agent systems. Int J
Softw Tools Technol Transf. https://doi.org/10.1007/s10009-015-
0378-x Availabe online

Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin
J, Aharon D (2015) The internet of things: mapping the value
beyond the hype. https://web.archive.org/web/20180726101247/
https://www.mckinsey.com/~/media/McKinsey/Business
Motavalli J (2010) The dozens of computers that make modern
cars go (and stop). https://web.archive.org/web/20180726104858/
https://www.nytimes.com/2010/02/05/technology/05electronics.
html

PileckiJ, Bednarczyk M, Jamroga W (2014) Synthesis and verifica-
tion of uniform strategies for multi-agent systems. In: Proceedings
of CLIMA XV, lecture notes in computer science, vol 8624, pp
166—182. Springer

Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber—physical
systems: the next computing revolution. In: Design automation
conference (DAC), 2010 47th ACM/IEEE, pp 731-736. IEEE
Sandholm TW (1999) Distributed rational decision making. In:
Weiss G (ed) Multiagent systems: a modern approach to distributed
artificial intelligence. The MIT Press, Cambridge, pp 201-258
Schlingloff B (2018) Specification and verification of collabora-
tive transport robots. In: 4th international workshop on emerging
ideas and trends in the engineering of cyber—physical systems,
EITEC@CPSWeek 2018, 10 April 2018, Porto, Portugal, pp 3—
8. IEEE Computer Society. https://doi.org/10.1109/EITEC.2018.
00006

Schlingloff B, Stubert H, Jamroga W (2016) Collaborative embed-
ded systems—a case study. In: 3rd international workshop on
emerging ideas and trends in engineering of cyber—physical
systems, EITEC@CPSWeek, pp 17-22. https://doi.org/10.1109/
EITEC.2016.7503691

Schlingloft BH, Stubert H, Jamroga W (2016) Collaborative
embedded systems—a case study. In: 2016 3rd international
workshop on Emerging ideas and trends in engineering of cyber—
physical systems (EITEC), pp 17-22. IEEE

Schobbens PY (2004) Alternating-time logic with imperfect recall.
Electron Notes Theor Computer Sci 85(2):82-93

Shoham Y, Leyton-Brown K (2009) Multiagent systems—
algorithmic, game-theoretic, and logical foundations. Cambridge
University Press, Cambridge

van der Hoek W, Lomuscio A, Wooldridge M (2006) On the
complexity of practical ATL model checking. In: Proceedings of
international joint conference on autonomous agents and multia-
gent systems (AAMAS), pp 201-208. ACM

van der Meyden R (2017) Optimizing epistemic model check-
ing using conditional independence. In: Proceedings of theoretical
aspects of rationality and knowledge, pp 398414

Weiss G (ed) (1999) Multiagent systems. A modern approach to
distributed artificial intelligence. MIT Press, Cambridge
Wooldridge M (2002) An introduction to multi agent systems.
Wiley, Amsterdam

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

212

D. Kurpiewski, D. Marmsoler

Damian Kurpiewski is a researcher
at the Polish Academy of Sci-
ences. His research interests in-
clude modelling, specification and
verification of strategic interac-
tion between agents in various
systems. Currently he is in the
middle of his PhD under the super-
vision of Prof. Jamroga, with the
focus onlogic-based verification of
voting protocols. Mr. Kurpiewski
has played a vital role in recent
algorithmic advances for model
checking of alternating-time logic
with imperfect information. He

Diego Marmsoler is a postdoc-
toral researcher at the Software
and Systems group of Prof. Man-
fred Broy at the Technical Uni-
versity of Munich. He obtained
a B.Sc. from the Free University
of Bozen-Bolzano and an M.Sc.
from the Technical University of
Munich, Ludwig Maximilian Uni-
versity of Munich, and Augsburg
University. He received a Ph.D. in
Computer Science from the Tech-
nical University of Munich in 2019.
His research focuses on the for-
mal specification and verification

also leads the development of the STV model checker. of distributed, component-based systems. In particular, he works on

the integration of various formal methods for the verification of such
systems.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature™).

Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access
control;

2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is
otherwise unlawful;

3. falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in
writing;

4. use bots or other automated methods to access the content or redirect messages

5. override any security feature or exclusionary protocol; or

6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal
content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice(@springernature.com

mailto:onlineservice@springernature.com

