How to Measure Usable Security: Natural Strategies in Voting Protocols

Damian Kurpiewski, Mateusz Kamiński (Wojtek Jamroga, Vadim Malvone)

Motivation

Analyzing voting protocols

Voting / e-voting protocol

Makes a mistake

Ignores instructions

Skips the procedure, because it's too complex, time-consuming, hard to understand...

Can affect the security of the system

Analyzing the voting system

01

Create the (simplified) model of the system

02

Focus on the voter's behavior and her point of view

03

Describe requirements using ATL/NatATL formulae

04

Create natural strategies for the voter (and other agents)

Strategy

- A plan
- A path in the model

Strategy description

1) N 2 S N 4 S E

1: N

2: S

3: N

4: S

5: E

Classic strategy

Complex

Long

Easy for the computer

Hard for the human

Natural Strategy

Conditional plan

Decisions are based on some observations

Based on the human behavior

Natural Strategy for the Voter

1. Out of the polling station -> go to the polling station

2. Empty ballot -> fill your ballot

3. Filled ballot -> cast your vote

Strategy in reality

Understand the rules of the voting procedure

Check if your vote is correct

Verify that your vote has been counted correctly

Sign-in to the e-voting system

And much more ...

Background

Logics and strategies

ATL: What Agents Can Achieve

- ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]
- Temporal logic meets game theory
- Main idea: cooperation modalities
- $\langle \langle A \rangle \rangle \phi$: coalition A has a collective strategy to enforce ϕ
- ϕ can include temporal operators: X (next), F (sometime in the future), G (always in the future), U (strong until)

Example Formula

• $\langle\langle Client\rangle\rangle$ F ticket

Client can eventually buy a ticket

Strategy

A strategy of agent $a \in Agt$ is a conditional plan that specifies what a is going to do in every possible situation.

Formally, a perfect information memoryless strategy for a can be represented by a function $s_a: St \to Act$ satisfying $s_a(q) \in d_a(q)$ for each $q \in St$.

Strategy

A strategy of agent $a \in Agt$ is a conditional plan that specifies what a is going to do in every possible situation.

Formally, a perfect information memoryless strategy for a can be represented by a function $s_a: St \to Act$ satisfying $s_a(q) \in d_a(q)$ for each $q \in St$.

An imperfect information memoryless strategy additionally satisfies $s_a(q) = s_a(q')$ whenever $q \sim_a q'$

Natural ATL

- Strategies in a form of a set of simple conditions: guarded actions
- Strategy complexity represented as the total lengths of guards in the strategy
- $\langle\langle A\rangle\rangle^{\leq k}\phi$: coalition A has a collective strategy of size less or equal than k to enforce ϕ
- $\langle\langle Client\rangle\rangle^{\leq 10}F$ ticket
- Client can buy a ticket by a strategy of complexity at most 10

Example Strategy

- 1. $\neg ticket \land \neg selected \land \neg paid \land \neg error \rightarrow select$
- 2. $selected \rightarrow pay$
- 3. $\rightarrow idle$

Example Strategy Complexity

1. $\neg ticket \land \neg selected \land \neg paid \land \neg error \rightarrow select$

$$cost = 11$$

2. $selected \rightarrow pay$

$$cost = 1$$

3. $\rightarrow idle$

$$cost = 1$$

Complexity: 11 + 1 + 1 = 13

Case Study

vVote voting system

Example case study: vVote

- Implementation of $Pr\hat{e}t \ \acute{a} \ Voter$ protocol
- Used for remote voting and voting of handicapped persons in the Australian state of Victoria elections in November 2014
- Main idea: encoding the vote using a randomized candidate list

finish finish error raise_error checkWBB_ok Voter Model checkWBB_fail checkWBB checkWBB not_share! checkWBB raise error share! move_next outside_ps request? raise_error check_request leave check3 check1 leave shred check3 _move_next check ballot counter++ check2_fail move_next shred move_next coerce(ca)? check2 check3 enter_vote(v)! give_document print? scan_ballot send send_to_wbb! check2 move_next polling_station cast printing has_ballot voted scanning move_next check2 ok skip

end

$\varphi_1 = \langle\langle voter \rangle\rangle^{\leqslant k} F(\text{checkWBB_ok} \vee \text{checkWBB_fail})$

- (1) start ∨ check2_ok ∨ check2_fail ∨ outside_ps → move_next
- (2) polling_station \rightsquigarrow give_document
- (3) has_ballot \rightsquigarrow scan_ballot
- (4) scanning $\rightsquigarrow enter_vote(v)$
- (5) voted $\rightsquigarrow check2$
- (6) cast \rightsquigarrow send_to_wbb
- (7) send \rightsquigarrow *shred*
- (8) shred $\rightsquigarrow leave$
- (9) check_request *→ not_share*
- (10) checkWBB $\rightsquigarrow checkWBB$
- $(11) \quad \top \leadsto \star$

Complexity

- 11 guarded commands
- (1) start \(\chappa check2_ok \(\chappa check2_fail \(\chappa outside_ps : \cost 7 \)
- Other guarded commands cost 1
- Total complexity: 1 * 10 + 7 * 1 = 17
- The formula φ_1 is true with any k of 17 and more

Example construction of the strategy for $arphi_1$

- (1) has_ballot \rightsquigarrow scan_ballot
- (2) \neg has_ballot \land scanning \rightsquigarrow *enter_vote*
- (3) \neg has_ballot $\wedge \neg$ scanning \wedge voted $\rightsquigarrow check2$
- (4) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted \land (check2_ok \lor check2_fail) \rightsquigarrow $move_next$
- (5) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) \land cast \rightsquigarrow $send_to_wbb$
- (6) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast \land send $\leadsto shred$
- (7) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast $\land \neg$ send \land shred $\leadsto leave$
- (8) ¬has_ballot ∧ ¬scanning ∧ ¬voted ∧ ¬(check2_ok ∨ check2_fail) ∧ ¬cast ∧ ¬send ∧ ¬shred ∧ check_request → not_share
- (9) \neg has_ballot $\land \neg$ scanning $\land \neg$ voted $\land \neg$ (check2_ok \lor check2_fail) $\land \neg$ cast $\land \neg$ send $\land \neg$ shred $\land \neg$ check_request \land checkWBB $\leadsto checkWBB$
- (10) ¬has_ballot ∧ ¬scanning ∧ ¬voted ∧ ¬(check2_ok ∨ check2_fail) ∧ ¬cast ∧ ¬send ∧ ¬shred ∧ ¬check_request ∧ ¬checkWBB ↔ ★

Problems

Problems to solve

Finding (one of possibly many) natural strategy for the given formulae (if the strategy exists)

Minimazing the representation/complexity of the found strategy

Problems to solve

Finding (one of possibly many) natural strategy for the given formulae (if the strategy exists)

Minimazing the representation/complexity of the found strategy

q1	q2	q3	q4	act
1	0	0	0	Α
0	1	1	0	В
0	1	0	0	С

q1	q2	q3	q4	act
1	0	0	0	А
0	1	1	0	В
0	1	0	0	С

After reduction:

q1	q3	act
1		Α
	1	В
		С

q1	q2	q3	q4	act
1	0	0	0	Α
0	1	1	0	В
0	1	0	0	С

After reduction:

q1	q3	act
1		Α
	1	В
		С

Natural strategy:

1.
$$q1 \rightarrow A$$

2.
$$q3 \rightarrow B$$

$$3. \quad T \rightarrow C$$

q1	q2	q3	q4	act
1	0	0	0	Α
0	1	0	1	Α
1	1	0	0	В
0	1	1	0	В

q1	q2	q 3	q4	act
1	0	0	0	Α
0	1	0	1	Α
1	1	0	0	В
0	1	1	0	В

After reduction:

q1	q2	q4	act
1	1		В
1			А
		1	А
			В

q1	q2	q 3	q4	act
1	0	0	0	Α
0	1	0	1	Α
1	1	0	0	В
0	1	1	0	В

After reduction:

q1	q2	q4	act
1	1		В
1			Α
		1	А
			В

Natural strategy:

1.
$$q1 \wedge q2 \rightarrow \mathbf{B}$$

2.
$$q1 \lor q4 \rightarrow A$$

$$3. \quad T \rightarrow B$$

Conclusions

- It's not enough that a voter has a strategy complexity is important
- Natural Strategy complexity helps to estimate the mental difficulty
- Other important factors exists: time, money, etc.
- Some parts of the voting procedure require more detailed models
- The presented methodology can be applied outside the e-voting domain

