Approximate Verification of Strategic Abilities under Imperfect Information Using Local Models

Damian Kurpiewski, Wojciech Jamroga, Yan Kim 21/08/2025

Institute of Computer Science Polish Academy of Sciences

Faculty of Mathematics and Computer Science Nicolaus Copernicus University in Toruń

Motivation

- Verification of strategic ability under imperfect information is challenging
 - Complexity ranges from NP-complete to undecidable
 - Traditional fixpoint equivalences fail in imperfect information setting

Motivation

- Verification of strategic ability under imperfect information is challenging
 - Complexity ranges from NP-complete to undecidable
 - Traditional fixpoint equivalences fail in imperfect information setting
- Existing fixpoint approximation (Jamroga et al., 2019):
 - · Operates on global model of the system
 - Still suffers from state/transition-space explosion

Motivation

- Verification of strategic ability under imperfect information is challenging
 - Complexity ranges from NP-complete to undecidable
 - Traditional fixpoint equivalences fail in imperfect information setting
- Existing fixpoint approximation (Jamroga et al., 2019):
 - Operates on global model of the system
 - Still suffers from state/transition-space explosion
- Key insight: For asynchronous MAS, we can leverage modular representation
 - Use local models instead of global model
 - Achieve exponential reduction in model size

Previous Work and Our Contribution

Previous Approach (Jamroga et al., 2019)

- Translation of ATL_{ir} to alternating epistemic μ -calculus
- Provides a lower bound for verification
- Still operates on global model (suffers from state-space explosion)

Previous Work and Our Contribution

Previous Approach (Jamroga et al., 2019)

- Translation of \mathbf{ATL}_{ir} to alternating epistemic μ -calculus
- Provides a lower bound for verification
- Still operates on global model (suffers from state-space explosion)

Our New Approach

- Leverage modular representation of asynchronous MAS
- Perform fixpoint computation on local model(s)
- Key observation: epistemic classes in global model ↔ local states
- Exponentially smaller model for verification

Asynchronous MAS: Voting Example

- ASV_n^k: n voters, k candidates, 1 coercer
- Voter chooses candidate & whether to share receipt
- · Coercer chooses to punish or not
- Events shared between agents must be executed synchronously

Formal Background

Asynchronous MAS (AMAS)

- *n* agents $A = \{1, ..., n\}$
- Each agent i has local states L_i, events Evt_i, repertoire function Roc_i
- Global state: $(I_1, \ldots, I_n) \in L_1 \times \cdots \times L_n$

Formal Background

Asynchronous MAS (AMAS)

- *n* agents $A = \{1, ..., n\}$
- Each agent i has local states L_i, events Evt_i, repertoire function Roc_i
- Global state: $(I_1, \ldots, I_n) \in L_1 \times \cdots \times L_n$

Strategic Ability (ATL_{ir})

- $\langle\langle i\rangle\rangle$ F ϕ : agent i has a strategy to eventually achieve ϕ
- $\langle \langle i \rangle \rangle$ G ϕ : agent i has a strategy to always maintain ϕ
- Imperfect information: strategies based on local states

Local Approximation Model

Definition (Local Approximating Model) For agent i, $M_i = (L_i, Evt_i, Roc_i, PV_i, Tapp_i)$ where:

- L_i: local states of agent i
- Tapp_i: transition relation capturing essential behavior
 - $(I, \epsilon, I) \in Tapp_i$ if global model has ϵ -loop at I
 - $(I, \tau, I) \in Tapp_i$ if global model has livelock cycle at I
 - $(\mathit{I},\alpha,\mathit{I}') \in \mathit{Tapp}_i$ if global model has path from I to I' via α

Key insight: The local model captures all relevant behavior for agent *i*'s strategic abilities.

Fixpoint Approximation on Local Models

Translation of sATL ir formulas

- 1. $tr_L(\langle\langle i\rangle\rangle F\phi) = \mu Z.(\phi \vee \langle i\rangle Z)$
- 2. $tr_L(\langle\langle i\rangle\rangle G\phi) = \nu Z.(\phi \wedge \langle i\rangle Z)$
- 3. $tr_L(\langle\langle i \rangle\rangle\psi \cup \phi) = \mu Z.(\phi \vee (\psi \wedge \langle i \rangle Z))$

Fixpoint Approximation on Local Models

Translation of sATL ir formulas

- 1. $tr_L(\langle\langle i\rangle\rangle F\phi) = \mu Z.(\phi \vee \langle i\rangle Z)$
- 2. $tr_L(\langle\langle i \rangle\rangle G\phi) = \nu Z.(\phi \wedge \langle i \rangle Z)$
- 3. $tr_L(\langle\langle i \rangle\rangle \psi \cup \phi) = \mu Z.(\phi \vee (\psi \wedge \langle i \rangle Z))$

Verification Procedure

- Generate local approximating model M_i for agent i
- Verify $tr_L(\phi)$ on M_i using standard fixpoint algorithm
- If true in M_i, then φ is true in the global model (lower approximation)

Experimental Setup

Benchmarks

- ASV: Asynchronous Simple Voting protocol
- ASV+R: ASV with revoting capability

Verified formula

$$\phi_1 = \langle\!\langle \textit{Voter}_1 \rangle\!\rangle F(\textit{vote}_{1,1} \land \neg \textit{give}_1)$$

Voter 1 can vote for candidate 1 without sharing receipt

Implementation

- Local model generation: UPPAAL
- · Verification: STV model checker
- Comparison: local approximation vs. global model

Experimental Results: ASV Protocol

#V	Model generation (s)			Verification (s)		
	Global	Approx.	Optimized	Global	Approx.	Result
2	0.04	6.60	6.54	< 0.01	< 0.01	TRUE
3	0.10	6.62	6.60	0.29	< 0.01	TRUE
4	1.22	6.93	6.91	30.15	< 0.01	TRUE
5	35.80	8.71	8.70	2659	< 0.01	TRUE
6	1206	36.95	29.42	timeout	< 0.01	TRUE
7	timeout	282.48	280.62	-	< 0.01	TRUE
8	timeout	5539	4046	-	< 0.01	TRUE

Key observation: Verification time for approximated model is **constant** regardless of number of voters.

Experimental Results: ASV with Revoting

#V	Model generation (s)			Verification (s)		
	Global	Approx.	Optimized	Global	Approx.	Result
2	0.82	19.43	19.27	8.20	< 0.01	TRUE
3	131.61	26.44	19.28	timeout	< 0.01	TRUE
4	timeout	524.93	19.25	-	< 0.01	TRUE
5	timeout	-	19.34	-	< 0.01	TRUE
6	timeout	-	19.40	-	< 0.01	TRUE
7	timeout	-	19.41	-	< 0.01	TRUE
8	timeout	-	19.43	-	< 0.01	TRUE
9	timeout	-	19.44	-	< 0.01	TRUE

Key observation: Optimized model generation time grows **linearly** with number of voters.

Conclusions and Future Work

Conclusions

- Proposed new fixpoint approximation using local models instead of global model
- Proved correctness: if formula holds in local model, it holds in global model
- Achieved exponential speedup in verification time
- Model generation can be optimized to grow linearly with system size (for some models)

Limitations and Future Work

- Current approach: observable goals, individual strategies only
- Future: general non-observable properties
- Future: proper coalitions (not just single agents)
- · Future: nested strategic reasoning