Towards Practical, On-the-Fly Verification of
Strategic Ability for Knowledge and
Information Flow

Damian Kurpiewski, Mateusz Kaminski, Wojciech Jamroga
24/09/2025

Institute of Computer Science
Polish Academy of Sciences

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University in Torun

Model Checking of Strategic
Abilities

ATL: What Agents Can Achieve

« ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]
» Temporal logic meets game theory
» Main idea: cooperation modalities

{(A)®: coalition A has a collective strategy to enforce ¢

~ ® can include temporal operators: X (next), F (sometime in the
future), G (always in the future), U (strong until)

Semantic Variants of ATL

Memory of agents:

+ Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

+ Perfect information (I) vs. imperfect information strategies (i)

Example Formulae

+ ((holmes)F(solve A —falseAccus):
“Sherlock Holmes can solve case without false accusation”

Example Formulae

* ((holmes))F(solve A —falseAccus):
“Sherlock Holmes can solve case without false accusation”

* ((holmes, watson))(—crisis) U endOfStory:
“Sherlock Holmes and Dr Watson are able to save Great Britain
from the crisis until the end of the story”

ATL with incomplete information

« Imperfect information (g ~5 q')

ATL with incomplete information

« Imperfect information (g ~5 q')

 Imperfect recall - agent memory coded within state of the model

ATL with incomplete information

* Imperfect information (q ~2 ')
 Imperfect recall - agent memory coded within state of the model
» Uniform strategies - specify same choices for indistinguishable

states:
q~a2q = 8a(q) =sa(q)

ATL with incomplete information

* Imperfect information (q ~2 ')

 Imperfect recall - agent memory coded within state of the model

» Uniform strategies - specify same choices for indistinguishable
states:

q~a2q = 8a(q) =sa(q)

 Fixpoint equivalences do not hold anymore

ATL with incomplete information

* Imperfect information (q ~2 ')
 Imperfect recall - agent memory coded within state of the model
» Uniform strategies - specify same choices for indistinguishable
states:
qd~aq = Sa(q) = sa(q’)

 Fixpoint equivalences do not hold anymore

« Model checking ATL,, is AS-complete

Formal Background

The main part of the input is given by a set of asynchronous modules,
where local states are labelled with valuations of state variables

A module is a tuple M = (S, Act, 6, so, AP, L) where:

« Sis a set of states.

+ Act is a set of actions.

* §: S x Act — S'is the transition function.
* 59 € Sis the initial state.

» AP is a set of atomic propositions.

« L: S — 24P is the labeling function.

Strategies

Strategy

A strategy for agent a is a function s, : S — Act such that for every
state g € S, s4(q) is an action available to ain g.

A strategy is uniform if for all states q,q' € S, if g ~5 @/, then
Sa(q) = sa(q')-

Outcome

The outcome of a strategy s, for coalition A from state q is the set of
all infinite paths A = qvg1q2 . .. such that qo = g and for all i > 0, there
exists a joint action a with az = s5(q;) foralla € Aand §(q;, @) = Qs 1.

Given a model M, a state q in the model, and a formula {(A)¢, the
formula holds in M, q iff there exists a uniform strategy s, for coalition
A such that for all states g’ € S with g ~4 ¢, all paths in the outcome
of s from g’ satisfy .

ATLK;

Knowledge operator K,

+ Agent a knows that ¢ holds in all states indistinguishable to a.
* Kyp holds in M, q iff © holds in all states q’ such that g ~; q'.

» Useful for reasoning about what agents can deduce from their
observations.

ATLH;

Hartley uncertainty operator H>* {41, ..., ¢n}
» Measures the uncertainty of agent a about a set of propositions.
. H§k means the agent’s uncertainty is at most k bits.

o H=%{a1, ..., ¥p} holds in M, q iff the number of possible
valuations for {1, ...,%n} in states indistinguishable to a from g
can be represented on at most k bits.

 Applied to analyze information flow and privacy in multi-agent
systems.

Example: Simple Model of Voting and Coercion

» Two agents: the Voter and the Coercer

» Two candidates

Example: Simple Model of Voting and Coercion

» Two agents: the Voter and the Coercer

» Two candidates

 Voter can cast her vote and then interact with the Coercer

+ Voter can give (or not) her vote to the Coercer

Example: Simple Model of Voting and Coercion

» Two agents: the Voter and the Coercer

» Two candidates

 Voter can cast her vote and then interact with the Coercer

+ Voter can give (or not) her vote to the Coercer

» Coercer can punish (or not) the voter

Example: Simple Model of Voting and Coercion

» Two agents: the Voter and the Coercer

» Two candidates

 Voter can cast her vote and then interact with the Coercer

+ Voter can give (or not) her vote to the Coercer
» Coercer can punish (or not) the voter

» Asynchronous semantics with synchronization over actions:
vote giving and punishment are synchronized

Example: Simple Model of Voting and Coercion

Voter Local Model

.{id:O,
V1_vote:"0"}

([0]_vote1) ([0]_vote2)
id:1, {id:2,
.{\M _vote:"1"} V1_vote:"2"}
(gv_1"Voter1) (ng_Voter?)
(ng_Voter1) (gu_2 Noter1)
.{id:B, {id:4,
V1_vote:"1"} V1_vote:"2"}
(npun_Noter1) (Pun_Voter1)
(pdn_Voter1) (npun_Voter1)
([0]/idle) ([0]widle)

{id:5, {id:6,
. V1_vote:"1"} . V1_vote:"2"}

Example: Simple Model of Voting and Coercion

Coercer Local Model

(gv_1Voler1) (gv_2_Votert) (ng_Voter1)
oy (g:?\'h finish"0""
G~V1_finish"0", V11 N
SRAl [e
C_V1_pun0", C_V1_pun0",
C_ViTvote™"1) CiV1_vote"0%
(pun_Voter1) (npun_Voter1) (pun_Voter1) (npun_Voter1) (pun_Voter1) (npun>Voter1)

{id5,
. CviZgv™
SViTpun

C_V1 vote:

Example: Simple Model of Voting and Coercion

Global Model

1000,

1 _vote 0",
C_VA_finish!
EViTgv0

EVipun'
C]Aj/’om 0%}
([oLva (O vote2)
gv 0
C aY) vo(e “B')
(ng_Voterh\ng_Votert) (ng_Votert/ho_Votert)

/

Voterl6v_1_Votert)

e

(gv_2_Votertgy_2_Votert)

|
(pun_Voter1/pun_Voter1)
|

(npun_Voterfippun_Votert) (pun_Volertipun_Voter1)
\ (npun_Votertnpun_Votert)

4"58 . J1ia

([0)idigy B ((014G16)/ Vi S

C@ &y, v
CVig -

(IOLIGIE) il vme 2",
(%)
CIV1

([ﬁlzlmei v| vms

V1 pun:
C_Vi_vote0'}

v inier
(lﬂLﬂ\ei/vi vole"t“ G ot o Sy
fnish SEAN Shun
e & Y,"'QU‘S" T RV]

CV1Tpun: c V1pun.1"
Vit Ve o

Example: Simple Model of Voting and Coercion

Example Formula

GV pun”
CoVivote"0%)

((oLvdfe1) (0L vote2)

{ig"10
Vi-vole 1"
'C_Vi_finish"0",

CViTpun
\Eviiote 0
/
(o0 voterhpg et (ng_Votert/hg_Votert)
Voot otert) 1\ a3 (9v_2_Voterigy_2_Votert)
\
v
(Vi pu
P Tolo"0)
I nmsn o,
Vg
i
RV

{npun_Voter1 npun_Votert)

fer}un_Votert)

(npun_Voter1/npun_Votert)
{17557, /
(0146 (v| Voig:" 1

Cvi
SV

il T VB

1[0Lwd\e) i m
G
~OL CViTvote 0}

(018 f‘\‘u Vot 1",
‘oY

€ vﬁ?ele ’)

1 7pun
RV RAE]

Va0

((Coercer))F puny:
“The Coercer can eventually punish the Voter”

EVi-fon’

(lﬂlelev G vule
CIV1vote:"2 [

2
it

Vi
Cvitvote 2]

Example: Simple Model of Voting and Coercion

Example Formula

ViZgv"0
GV pun”
/ CoVitvote"0°)

((oLvdfe1) (0L vote2)

{ig"10
Vivole"1"
'C_Vi_finish"0",

CViTpun
\CViZvote 07y
/
(ng_Voterfing_Votert) (ng_Votert/ng_Votert)
VoterGv_1_Voter1) \ a3 (v_2_Voterhgy_2_Votert)

\

V.
“ViTpur
1_vote"0%)

(
L' nmsn 0",
Vo

i
RV

{npun_Voter1 npun_Votert)

/ \
|
foun_Votertlpun_votert) (pun_Voter1/pun_Voter1)

\ [
(npun_Voterdppun_Volert) (pun_Voter/pun_Votert)

terdpun_Voter1)

(npun_Voter1/npun_Votert)
{17557, /
(0146 (v| Voig:" 1

58",
(0148 ‘\‘u Volg:" 1",
A% V h

08 \61 V‘m' ;‘ ; v et \
gt VB EVifon 0 i S
‘) . (‘ C_V1_vote:"0%} \‘ 1d76:9: C VWJ;O‘G'Z C. Vv|u|%lll>h 1",
Vit uumewwvw.? r, et
g v
&Y e c:vd’me 7
ViTpun - -
Vi Toos Vw0

((Coercer))F puny:
“The Coercer can eventually punish the Voter”

TRUE

Example: Simple Model of Voting and Coercion

Example Formula

(0Lvefen)

(g0
Vi

Vi-vole 1"
'C_Vi_finis|
1Zov"

CViTpun”e:
\CViTvote "0}
(ng_Voterfing_Votert)

(gv_1_VotertGv_1_Votert) \ s

yC V1
CViTgv:
C_Vi_pun0
S ViTvote"1%

 Voterfnpun_Voter1)

/ \
pun_votertipun Vortert)
/ \

(pun_Voter}spun_Votert) (npun_Voter1/npun_Votert)
/ pun_Voter1)

o (05,9
(014%) ,/‘\‘uvvune
i

K‘. CViTa

Cvitvote 2]

{(Coercer))G(finishy A vote1 1 = Kcgvoteq 1):
“The Coercer knows when the Voter has voted for the first candidate”

Example: Simple Model of Voting and Coercion

Example Formula

(0Lvefen)

(g0
Vi

Vi-vole 1"
'C_Vi_finis|
1Zov"

CViTpun”e:
\CViTvote "0}
(ng_Voterfing_Votert)

(gv_1_VotertGv_1_Votert) \ s

yC V1
CViTgv:
C_Vi_pun0
S ViTvote"1%

 Voterfnpun_Voter1)

/ \
pun_votertipun Vortert)
/ \

(pun_Voter}spun_Votert) (npun_Voter1/npun_Votert)
/ pun_Voter1)

o (05,9
(014%) ,/‘\‘uvvune
i

K‘. CViTa

Cvitvote 2]

{(Coercer))G(finishy A vote1 1 = Kcgvoteq 1):
“The Coercer knows when the Voter has voted for the first candidate”

FALSE

Example: Simple Model of Voting and Coercion

Example Formula

(0Lvefen)

{910
Vi

Vi-vole 1"
'C_Vi_finis|
v

CViTpun”e:
\CViTvote "0}
(ng_Voterfing_Votert)

(gv_1_VotertGv_1_Votert) \ s

yC V1
CViTgv:
C_Vi_pun0
G Vi vole ™1

 Voterfnpun_Voter1)

/ \
pun_votertipun Vortert)
/ \

(pun_Voter1fun_Votert) (npun_Voter1/npun_Votert)

(175,97,
(0L69) ,/‘\‘uvvune
]

~@y o)

CViTvote 27
ViTpun 1 Evipuny
CViTvole 0] CViTvote "0}

((Coercer)G(finishy = HZ?{votes 1,vote; 2}):
“The Coercer uncertainty about the Voter’s vote is at most 2 bits”

Example: Simple Model of Voting and Coercion

Example Formula

(0Lvefen)

{910
Vi

Vi-vole 1"
'C_Vi_finis|
v

CViTpun”e:
\CViTvote "0}
(ng_Voterfing_Votert)

(gv_1_VotertGv_1_Votert) \ s

yC V1
CViTgv:
C_Vi_pun0
G Vi vole ™1

 Voterfnpun_Voter1)

/ \
pun_votertipun Vortert)
/ \

(pun_Voter}spun_Votert) (npun_Voter1/npun_Votert)
/ pun_Voter1)

(175,97,
(0L69) ,/‘\‘uvvune
]

~@y o)

C_ViZvote 2§

((Coercer)G(finishy = HZ?{votes 1,vote; 2}):
“The Coercer uncertainty about the Voter’s vote is at most 2 bits”

TRUE

Example: 2 Voters

Simple Specification Language

Simple Voting Model
Agent Voterl:

LOCAL: [V1_vote]

PERSISTENT: [V1_vote]

INITIAL: []

init qO
votel: -> [V1_vote:=1]
votel: -> [V1_vote:=2]

shared[2] gv_1_Voterl[gv_1l Voterl]: [
shared[2] gv_2 Voterl[gv_1l Voter2]: [

shared[2] ng Voterl[ng Voterl]: —>
shared[2] pun_Voterl[pn_Voterl]: -
shared[2] npun_Voterl[pn Voterl]: ->
idle: ->

FORMULA: <<Coercer>>[] (C_V1_finish==0 ||
(V1l_vote==1 && &K_Coercer (Vl_vote==1)))

Agent

Initial configuration
Shared transition
Local name

Local transition

Proposition variable
Formula

STV - Strategic Verifier

STV - Strategic Verifier

» Explicit-state model checking.

STV - Strategic Verifier

» Explicit-state model checking.
» User-defined input.

STV - Strategic Verifier

» Explicit-state model checking.
* User-defined input.
« Web-based graphical interface.

STV - Strategic Verifier

» Explicit-state model checking.
* User-defined input.
» Web-based graphical interface.

» Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

STV - Strategic Verifier

» Explicit-state model checking.

* User-defined input.

» Web-based graphical interface.

» Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

* Reduction methods: partial-order reductions and
assume-guarantee reasoning.

STV - Strategic Verifier

» Explicit-state model checking.
* User-defined input.
» Web-based graphical interface.

» Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

» Reduction methods: partial-order reductions and
assume-guarantee reasoning.

» Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

STV - Strategic Verifier

» Explicit-state model checking.

* User-defined input.

» Web-based graphical interface.

» Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

» Reduction methods: partial-order reductions and
assume-guarantee reasoning.

» Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

Properties: reachability and safety.

STV - Strategic Verifier

» Explicit-state model checking.
* User-defined input.
» Web-based graphical interface.

» Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

» Reduction methods: partial-order reductions and
assume-guarantee reasoning.

» Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

 Properties: reachability and safety.
» Epistemic operators: knowledge and Hartley uncertainty.

Approximate Verification of Strategic Ability

M = © : DIFFICULT!

M= LB(p) = M =i ¢ = M = UB(p)

Alternating Epistemic Perfect Information
Mu-Calculus

DFS Strategy Synthesis

DFS Strategy Synthesis

DFS Strategy Synthesis

DFS Strategy Synthesis

DFS Strategy Synthesis

Challenges

Algorithm Overview

o n
e coaition In
cmentsise?

hers botcontoted
ons avaiabie?

ik an acion el s aesty sa1
1 et 1 5 ncontraled

e thers agents
fock he agent n coslton
sxectng anacion?_-

/

ncontrles

e o~

e hers conroled actons?
7

oo backt e previous gecsion and
oyto corect -

Retum FALSE.

N

~
s s

e there a contro
het s OK:

JFick s acon, marc
coatton, go103

tas st for e

Retum TRUE.

Fic svary uncontoted acion, o o
anex stste fo the sach one

Algorithm Part 1

State with a set of avaliable actions

Te there a set action for
the coalition in
current state?

re there both controlled and
uncontrolled actions avaliable?

“Pick an action that s already set
and treat it as uncontrolied
Ignore all other actions controlled by|
the coalition.
~Treatthe rest of the actions as

uncontrolled.

~Change all controlled actions info
uncontrolled ones
~Treat the rest of the actions as
uncontrolled.

executing an action?

Begin verification

Algorithm Part 2

Was it the last state?

Retumn TRUE

s there a controlled action
thatis
[Pick this action, mark it as set forthe|
coaiion, go to a nex state

"Are there controlied actions?

Was it the last state?

‘Are there uncontrolled actions?

Pick every uncontrolled acton, go to
next state for the each one.

Return FALSE

|60 back to the previous decision and|
t

ty to correct

Experimental Evaluation

Verification of Selene E-Voting Protocol

Standard On-the-fly
#A States | Gen | Verif | States | Verif Res
4 | 3.85e4 3 <1 | 291e3 | <1 | True
5 | 2.19e6 | 179 <1 | 1.47e5 1 True
6 | 8.12e7 | 2642 | <1 | 1.10e6 | 14 | True
7 timeout 9.60e6 | 406 | True
8 timeout

Table 1: Results for ¢1 with 3 candidates and 3 revotes

¢1 = ((C)G((finishy A revote = 2 A voted; = 1) — Kcvoted; = 1)

Conclusions

Conclusions

Modal logics for MAS are characterized by high computational
complexity.

Verification of strategic properties in scenarios with imperfect
information is difficult.

Much complexity of model checking for strategic abilities is due
to the size of the model of the system.

STV addresses the challenge by implementing various
reduction and model-checking methods which shows very
promising performance.

STV supports user-friendly modelling of MAS, and automated
reduction and verification methods.

Addition of knowledge and uncertainty operators allows
verification of anonymity-related properties.

THANK YOU!

	Model Checking of Strategic Abilities
	Formal Background
	STV - Strategic Verifier
	Model-checking algorithms

	Challenges
	Experimental Evaluation
	Conclusions

