
Towards Practical, On-the-Fly Verification of
Strategic Ability for Knowledge and
Information Flow

Damian Kurpiewski, Mateusz Kamińśki, Wojciech Jamroga

24/09/2025

Institute of Computer Science
Polish Academy of Sciences

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University in Toruń

Model Checking of Strategic
Abilities

ATL: What Agents Can Achieve

• ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

• Temporal logic meets game theory

• Main idea: cooperation modalities

⟨⟨A⟩⟩Φ: coalition A has a collective strategy to enforce Φ

; Φ can include temporal operators: X (next), F (sometime in the
future), G (always in the future), U (strong until)

Semantic Variants of ATL

Memory of agents:

• Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

• Perfect information (I) vs. imperfect information strategies (i)

Example Formulae

• ⟨⟨holmes⟩⟩F(solve ∧ ¬falseAccus):
“Sherlock Holmes can solve case without false accusation”

• ⟨⟨holmes,watson⟩⟩(¬crisis)U endOfStory:
“Sherlock Holmes and Dr Watson are able to save Great Britain
from the crisis until the end of the story”

Example Formulae

• ⟨⟨holmes⟩⟩F(solve ∧ ¬falseAccus):
“Sherlock Holmes can solve case without false accusation”

• ⟨⟨holmes,watson⟩⟩(¬crisis)U endOfStory:
“Sherlock Holmes and Dr Watson are able to save Great Britain
from the crisis until the end of the story”

ATL with incomplete information

• Imperfect information (q ∼a q′)

• Imperfect recall - agent memory coded within state of the model

• Uniform strategies - specify same choices for indistinguishable
states:
q ∼a q′ =⇒ sa(q) = sa(q′)

• Fixpoint equivalences do not hold anymore

• Model checking ATLir is ∆p
2-complete

ATL with incomplete information

• Imperfect information (q ∼a q′)

• Imperfect recall - agent memory coded within state of the model

• Uniform strategies - specify same choices for indistinguishable
states:
q ∼a q′ =⇒ sa(q) = sa(q′)

• Fixpoint equivalences do not hold anymore

• Model checking ATLir is ∆p
2-complete

ATL with incomplete information

• Imperfect information (q ∼a q′)

• Imperfect recall - agent memory coded within state of the model

• Uniform strategies - specify same choices for indistinguishable
states:
q ∼a q′ =⇒ sa(q) = sa(q′)

• Fixpoint equivalences do not hold anymore

• Model checking ATLir is ∆p
2-complete

ATL with incomplete information

• Imperfect information (q ∼a q′)

• Imperfect recall - agent memory coded within state of the model

• Uniform strategies - specify same choices for indistinguishable
states:
q ∼a q′ =⇒ sa(q) = sa(q′)

• Fixpoint equivalences do not hold anymore

• Model checking ATLir is ∆p
2-complete

ATL with incomplete information

• Imperfect information (q ∼a q′)

• Imperfect recall - agent memory coded within state of the model

• Uniform strategies - specify same choices for indistinguishable
states:
q ∼a q′ =⇒ sa(q) = sa(q′)

• Fixpoint equivalences do not hold anymore

• Model checking ATLir is ∆p
2-complete

Formal Background

Modules

The main part of the input is given by a set of asynchronous modules,
where local states are labelled with valuations of state variables

A module is a tuple M = (S,Act , δ, s0,AP,L) where:

• S is a set of states.

• Act is a set of actions.

• δ : S × Act → S is the transition function.

• s0 ∈ S is the initial state.

• AP is a set of atomic propositions.

• L : S → 2AP is the labeling function.

Strategies

Strategy

A strategy for agent a is a function sa : S → Act such that for every
state q ∈ S, sa(q) is an action available to a in q.

A strategy is uniform if for all states q,q′ ∈ S, if q ∼a q′, then
sa(q) = sa(q′).

Outcome

The outcome of a strategy sA for coalition A from state q is the set of
all infinite paths λ = q0q1q2 . . . such that q0 = q and for all i ≥ 0, there
exists a joint action α with αa = sa(qi) for all a ∈ A and δ(qi , α) = qi+1.

ATLir

Given a model M, a state q in the model, and a formula ⟨⟨A⟩⟩φ, the
formula holds in M,q iff there exists a uniform strategy sA for coalition
A such that for all states q′ ∈ S with q ∼A q′, all paths in the outcome
of sA from q′ satisfy φ.

ATLKir

Knowledge operator Kaφ

• Agent a knows that φ holds in all states indistinguishable to a.

• Kaφ holds in M,q iff φ holds in all states q′ such that q ∼a q′.

• Useful for reasoning about what agents can deduce from their
observations.

ATLHir

Hartley uncertainty operator H≤k
a {ψ1, . . . , ψn}

• Measures the uncertainty of agent a about a set of propositions.

• H≤k
a means the agent’s uncertainty is at most k bits.

• H≤k
a {ψ1, . . . , ψn} holds in M,q iff the number of possible

valuations for {ψ1, . . . , ψn} in states indistinguishable to a from q
can be represented on at most k bits.

• Applied to analyze information flow and privacy in multi-agent
systems.

Example: Simple Model of Voting and Coercion

• Two agents: the Voter and the Coercer

• Two candidates

• Voter can cast her vote and then interact with the Coercer

• Voter can give (or not) her vote to the Coercer

• Coercer can punish (or not) the voter

• Asynchronous semantics with synchronization over actions:
vote giving and punishment are synchronized

Example: Simple Model of Voting and Coercion

• Two agents: the Voter and the Coercer

• Two candidates

• Voter can cast her vote and then interact with the Coercer

• Voter can give (or not) her vote to the Coercer

• Coercer can punish (or not) the voter

• Asynchronous semantics with synchronization over actions:
vote giving and punishment are synchronized

Example: Simple Model of Voting and Coercion

• Two agents: the Voter and the Coercer

• Two candidates

• Voter can cast her vote and then interact with the Coercer

• Voter can give (or not) her vote to the Coercer

• Coercer can punish (or not) the voter

• Asynchronous semantics with synchronization over actions:
vote giving and punishment are synchronized

Example: Simple Model of Voting and Coercion

• Two agents: the Voter and the Coercer

• Two candidates

• Voter can cast her vote and then interact with the Coercer

• Voter can give (or not) her vote to the Coercer

• Coercer can punish (or not) the voter

• Asynchronous semantics with synchronization over actions:
vote giving and punishment are synchronized

Example: Simple Model of Voting and Coercion
Voter Local Model

Example: Simple Model of Voting and Coercion
Coercer Local Model

Example: Simple Model of Voting and Coercion
Global Model

Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨Coercer⟩⟩F pun1:
“The Coercer can eventually punish the Voter”

TRUE

Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨Coercer⟩⟩F pun1:
“The Coercer can eventually punish the Voter”

TRUE

Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨Coercer⟩⟩G(finish1 ∧ vote1,1 =⇒ KCvote1,1):
“The Coercer knows when the Voter has voted for the first candidate”

FALSE

Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨Coercer⟩⟩G(finish1 ∧ vote1,1 =⇒ KCvote1,1):
“The Coercer knows when the Voter has voted for the first candidate”

FALSE

Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨Coercer⟩⟩G(finish1 =⇒ H≤2
C {vote1,1, vote1,2}):

“The Coercer uncertainty about the Voter’s vote is at most 2 bits”

TRUE

Example: Simple Model of Voting and Coercion
Example Formula

⟨⟨Coercer⟩⟩G(finish1 =⇒ H≤2
C {vote1,1, vote1,2}):

“The Coercer uncertainty about the Voter’s vote is at most 2 bits”

TRUE

Example: 2 Voters

Simple Specification Language

Simple Voting Model
Agent Voter1:
LOCAL: [V1_vote]
PERSISTENT: [V1_vote]
INITIAL: []
init q0
vote1: q0 -> q1 [V1_vote:=1]
vote2: q0 -> q1 [V1_vote:=2]
shared[2] gv_1_Voter1[gv_1_Voter1]: q1 [V1_vote==1] -> q2
shared[2] gv_2_Voter1[gv_1_Voter2]: q1 [V1_vote==2] -> q2
shared[2] ng_Voter1[ng_Voter1]: q1 -> q2
shared[2] pun_Voter1[pn_Voter1]: q2 -> q3
shared[2] npun_Voter1[pn_Voter1]: q2 -> q3
idle: q3 -> q3

FORMULA: <<Coercer>>[](C_V1_finish==0 ||
(V1_vote==1 && &K_Coercer(V1_vote==1)))

Agent

Initial configuration

Shared transition

Local name

Local transition

Guard

State (template)

Proposition variable

Formula

STV - Strategic Verifier

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

STV - Strategic Verifier

• Explicit-state model checking.

• User-defined input.

• Web-based graphical interface.

• Model-checking algorithms: fixpoint-approximations, depth-first
strategy synthesis and on-the-fly strategy synthesis.

• Reduction methods: partial-order reductions and
assume-guarantee reasoning.

• Asynchronous semantics with: action-oriented synchronization
and data-oriented synchronization.

• Properties: reachability and safety.

• Epistemic operators: knowledge and Hartley uncertainty.

Approximate Verification of Strategic Ability

M |=ir φ : DIFFICULT!

M |=ir φM |= LB(φ) M |= UB(φ)

Perfect InformationAlternating Epistemic
Mu-Calculus

DFS Strategy Synthesis

q0start

q2 q1

q4

p

q3

p

q5

¬p

(A,U)

(B, ⋆)

(A,V)

(A,V)

(A,U)

(B, ⋆) (B, ⋆)

(A,U)

(A,V)

1

DFS Strategy Synthesis

q0start

q2 q1

q4

p

q3

p

q5

¬p

(A,U)

(B, ⋆)

(A,V)

(A,V)

(A,U)

(B, ⋆) (B, ⋆)

(A,U)

(A,V)

1

DFS Strategy Synthesis

q0start

q2 q1

q4

p

q3

p

q5

¬p

(A,U)

(B, ⋆)

(A,V)

(A,V)

(A,U)

(B, ⋆) (B, ⋆)

(A,U)

(A,V)

1

DFS Strategy Synthesis

q0start

q2 q1

q4

p

q3

p

q5

¬p

(A,U)

(B, ⋆)

(A,V)

(A,V)

(A,U)

(B, ⋆) (B, ⋆)

(A,U)

(A,V)

1

DFS Strategy Synthesis

q0start

q2 q1

q4

p

q3

p

q5

¬p

(A,U)

(B, ⋆)

(A,V)

(A,V)

(A,U)

(B, ⋆) (B, ⋆)

(A,U)

(A,V)

1

Challenges

Algorithm Overview

Algorithm Part 1

Algorithm Part 2

Experimental Evaluation

Verification of Selene E-Voting Protocol

#A
Standard On-the-fly

Res
States Gen Verif States Verif

4 3.85e4 3 <1 2.91e3 <1 True
5 2.19e6 179 <1 1.47e5 1 True
6 8.12e7 2642 <1 1.10e6 14 True
7 timeout 9.60e6 406 True
8 timeout

Table 1: Results for ϕ1 with 3 candidates and 3 revotes

ϕ1 ≡ ⟨⟨C⟩⟩G
(
(finish1 ∧ revote = 2 ∧ voted1 = 1) → KCvoted1 = 1

)

Conclusions

Conclusions

• Modal logics for MAS are characterized by high computational
complexity.

• Verification of strategic properties in scenarios with imperfect
information is difficult.

• Much complexity of model checking for strategic abilities is due
to the size of the model of the system.

• STV addresses the challenge by implementing various
reduction and model-checking methods which shows very
promising performance.

• STV supports user-friendly modelling of MAS, and automated
reduction and verification methods.

• Addition of knowledge and uncertainty operators allows
verification of anonymity-related properties.

THANK YOU!

	Model Checking of Strategic Abilities
	Formal Background
	STV - Strategic Verifier
	Model-checking algorithms

	Challenges
	Experimental Evaluation
	Conclusions

